

- 1 -

April 2010

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 – Q6 Q7 , Q8

Question Selection Compulsory Select 1 of 2

Examination Time 13:30 - 16:00 (150 minutes)

Instructions:
1. Use a pencil. If you need to change an answer, erase your previous answer completely

and neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or
write on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection
For Q7 and Q8, mark the S of the question you select to answer in the “Selection
Column” on your answer sheet.

(4) Answers
Mark your answers as shown in the following sample question.

[Sample Question]

In which month is the spring Fundamental IT Engineer Examination conducted?

Answer group
a) March b) April c) May d) June

Since the correct answer is “ b) April ”, mark your answer sheet as follows:

[Sample Answer]

Sample

Do not open the exam booklet until instructed to do so.

Inquiries about the exam questions will not be answered.

ウA C D

- 2 -

Notations used for pseudo-language

In questions that use pseudo-language, the following notations are used unless otherwise
stated.

[Declaration, comment, and process]

Notation Description


Declares names, types, etc. of procedures,
variables, etc.

/* text */ Describes comments in text.

P
ro

ce
ss

• variable ← expression
Assigns the value of an expression to a
variable.

• procedure(argument, ...)
Calls the procedure and passes/receives
argument.

 conditional expression
 process


Indicates a one-way selection process.
If the conditional expression is true,
then the process is executed.

 conditional expression
 process 1

 process 2


Indicates a two-way selection process.
If the conditional expression is true,
then process 1 is executed.
If it is false, then process 2 is executed.

 conditional expression
 process


Indicates a pre-test iteration process.
While the conditional expression is true, the
process is executed repeatedly.



 process
 conditional expression

Indicates a post-test iteration process.
The process is executed, and then while the
conditional expression is true, the process is
executed repeatedly.

 variable: init, cond, incr
 process


Indicates an iteration process.
The initial value init (given by an expression)
is stored in the variable at the start of the
processing, and then while the conditional
expression cond is true, the process is
executed repeatedly.
An increment incr (given by an expression) is
added to the variable in each iteration.

- 3 -

[Logical constants]

true, false

[Operators and their priorities]

Type of operation Operator Priority

Unary operation +, −, not High

Multiplication, division ×, ÷, %

Addition, subtraction +, −

Relational operation >, <, ≥, ≤, =, ≠

Logical product and

Logical sum or Low

Note: With division of integers, integer quotient is returned as a result.
 The % operator indicates a remainder operation.

Company names and product names appearing in the test questions are trademarks or registered
trademarks of their respective companies. Note that the ® and ™ symbols are not used within.

- 4 -

 Questions Q1 through Q6 are all compulsory. Answer every question.

Q1. Read the following description concerning instruction execution, and then answer

Subquestion.

There are two programs; Program 1 and Program 2. Program 1 is implemented for the

processor A and Program 2 is implemented for the processor B.

The following table shows the occurrence of each instruction type in the two programs.

The second table shows the number of cycles needed for each instruction type.

The clock frequency of processor A is 230 MHz and of processor B is 110 MHz.

Instruction Program 1 on
Processor A

Program 2 on
Processor B

Integer Addition/Subtraction
Integer Multiplication
Load/Store Word
Floating Point Addition/Subtraction
Floating Point Multiplication

100
200
150
10
40

20
30
50
60

160

Instruction Processor A Processor B
Integer Addition/Subtraction
Integer Multiplication
Load/Store Word
Floating Point Addition/Subtraction
Floating Point Multiplication

1
2
6

10
20

5
10
2

15
5

- 5 -

Subquestion

From the answer group below, select the correct answers to be inserted into the blanks

000A000 in the following description.

(1) Program 1 on processor A completes its execution in 000A000 microseconds, while

Program 2 on processor B completes its execution in 000B000 microseconds. Here,

take no account of any overhead nor interruptions.

(2) The MIPS (Million Instructions Per Second) value is 000C000 for Program 1 on

processor A, and 000D000 for Program 2 on processor B.

(3) Program 3 is newly created. The following table shows the occurrence of each

instruction type in Program 3. Since the number of non-floating point instructions are

negligible, consider only floating point instructions. Then, MFLOPS (Million Floating

Point Operations per Second) value is 15.33 for processor A, and 000E000 for

processor B. So the program execution on processor A is faster than on processor B.

Answer group

a) 8 b) 10 c) 11 d) 16

e) 20 f) 23 g) 40 h) 50

Instruction Program 3
Integer Addition/Subtraction
Integer Multiplication
Load/Store Word
Floating Point Addition/Subtraction
Floating Point Multiplication

100
0

100
 100,000
 100,000

- 6 -

Q2. Read the following description concerning a specification of some hard disk’s file

system, and then answer Subquestions 1 and 2.

A file system manages the files, directories, its storage in the hard disk, and how the files

get loaded into memory and used by programs. Each hard disk partition is divided into

groups. A group size is ideally in accordance with the structure of the tracks and sectors of

the hard disk to make for efficient retrieval. There is no significant performance loss when

retrieving data in the same group. Performance loss is noticeable when retrieving data

across different groups.

Figure 1 shows the structure of a group for some file system. Each group contains a

superblock, a group descriptor, a block bitmap, an inode bitmap, an inode table, and finally

data blocks.

Superblock
Contains entire file system information of the hard disk
partition. A hard disk partition is a logical division of the
hard disk.

Group Descriptor Contains information local to the group being loaded.

Block Bitmap
Contains n bits corresponding to the data blocks 1 to n. A bit
with value 1 indicates that the corresponding data block is
being used, and value 0 indicates unused.

Inode Bitmap
Each file is described with exactly one inode. Inodes are
located in the inode table. Each entry has an inode ID. The
inode table contains all inodes and is fixed in size. See
Figure 2 for example.

Inode bitmap contains the status of the inode table entries. A
bit with value 1 indicates that the corresponding entry is
being used, and value 0 indicates unused.

Inode Table
Inode
ID

File
information

01
02
03
:
n

Data Block 1

Contains the file’s data. The file’s data is subdivided into
one or more data blocks. Each data block is fixed in size
with 4096 bytes each. Data up to 4096 bytes will use 1 data
block, data up to 8192 bytes will use 2 data blocks, etc.

Data Block 2

:

Data Block n-1

Data Block n

Figure 1 Structure of a group

- 7 -

File information in inode table contains mode (file permission and kind of file), owner

information, size, time stamp, and 8 direct pointers (dbptr 01 to 08) to data blocks plus 2

indirect pointers (dbptr 09 and 10) to more data blocks. If a file makes use of 8 data blocks

or less, then up to 8 direct pointers will point to the data blocks used. If the file makes use

of 9 data blocks or more, each indirect pointer will point to the data block containing the

next 1024 direct pointers for succeeding data blocks.

Inode ID 39 8D A5 FA

F
il

e
In

fo
rm

at
io

n

mode

owner W X Y Z

size 20480 32000 5120 23552

time stamp

dbptr 01 A01 B01 A04 E01

dbptr 02 D06 C01 C02 E02

dbptr 03 C03 D01 nil E03

dbptr 04 A02 F01 nil E04

dbptr 05 B05 B04 nil E05

dbptr 06 nil C04 nil E06

dbptr 07 nil D04 nil nil

dbptr 08 nil F04 nil nil

dbptr 09 nil nil nil nil

dbptr 10 nil nil nil nil

Note: “nil” indicates “unused”.

Figure 2 Inode of 4 different files in the same group

Addr 01 02 03 04 05 06

A A01 data … A02 data … A04 data …

B B01 data … B04 data … B05 data …

C C01 data … C02 data … C03 data … C04 data …

D D01 data … D04 data … D06 data …

E E01 data … E02 data … E03 data … E04 data … E05 data … E06 data …

F F01 data … F04 data …
Note: The addressing is in row-order form.

It begins with A01 through A06 and followed by the next row and so on.
Figure 3 Data blocks of the group in Figure 2

- 8 -

Subquestion 1

From the answer group below, select the correct answer to be inserted into the blank

000A000 in the following description.

Figure 2 represents 4 files found in a group, and Figure 3 shows the data blocks of the

group. Then, the block bitmap in the group contains the value 000A000 in hexadecimal.

Answer group

a) D26 F25 FE4 b) D9F 9F9 FE4

c) E52 ED1 EDC d) FA2 F41 EDC

Subquestion 2

From the answer group below, select the correct answers to be inserted into the blanks

000A000 in the following description.

The file system takes into consideration design issue of fragmentation but does not

eliminate it. In the example shown in Figure 2 and 3, internal fragmentation (unused

space) will exist where the file with inode 000A000 will be most fragmented and the file

with inode 000B000 will have ZERO fragmentation. Such a form of fragmentation is

tolerable in order to attain faster retreival of data. The ratio of internal fragmentation

across the whole group becomes 000C000 as the number of large files increases and the

reverse occurs as the number of small files increases.

Assuming that a series of append file operations are performed in the following order:

• File of inode 8D doubles in size

• File of inode A5 increases by 13000 bytes

• File of inode FA increases by 10000 bytes

• File of inode 39 increases by 8000 bytes

The group will run out of data blocks when the file with inode 000D000 tries to write its

updates. In this situation, a new group is brought in and the free data block from that

group is used. The corresponding dbptr(s) of inode 000D000 will be pointing to the data

block of another group.

Answer group

a) larger b) smaller c) 39

d) 8D e) A5 f) FA

- 9 -

Q3. Read the following description concerning a database, and then answer Subquestions 1

through 3.

The following is a part of the functions of a sales and distribution company. One of their

business functions is sending the sales teams to townships by van cars carrying sales items

to sell.

For each sales trip, the sales team need to:

1. Issue the specific quantity of sales items from a warehouse

2. Make the sales trip and sell the sales items

3. Return to the office and give back the remaining sales items to the warehouse

Transfer history of sales items are stored in TransferHis table. There are two types of

transfer records for each trip:

1. From warehouse to van car before going trip

2. From van car to warehouse after the trip

For the same trip, the trip code (TripCode) and township name (TspName) will be fixed.

The sales trip may take a few days.

For simplicity, suppose that there is only one item. So, the item code is not stored in the

table.

Sample data in the following TransferHis table shows:

- On 1-Jan-10, WH01 transfers 100 stocks to Van01 that will go to Bago.

Trip code is T001.

- On 3-Jan-10, Van01 returns 30 stocks to WH01 after selling stocks at Bago.

Trip code is T001. Thus, sold quantity is 70.

- …

Table TransferHis

TranID TDate TripCode TspName FromLoc ToLoc Qty

1 1-Jan-10 T-001 Bago WH01 Van01 100

2 3-Jan-10 T-001 Bago Van01 WH01 30

3 4-Jan-10 T-002 Mhaw Bi WH02 Van02 200

4 5-jan-10 T-002 Mhaw Bi Van02 WH02 50

5 6-jan-10 T-003 Insein WH01 Van03 300

6 7-jan-10 T-003 Insein Van03 WH01 80

- 10 -

Subquestion 1

An SQL statement is created to generate the sales summary of each trip in the following

format. From the answer group below, select the correct answer to be inserted into the

blank 000A000 in the following SQL statement.

Select T1.TripCode, T1.TspName, T1.Qty-T2.Qty as Qty

From TransferHis T1 left join TransferHis T2 on

Answer group

a) T1.TripCode = T2.TripCode

Where T1.FromLoc <> T2.FromLoc and

 T1.TspName = T2.TspName

b) T1.TspName = T2.TspName

Where T1.TDate <= T2.TDate and

 T1.TripCode = T2.TripCode

c) T1.TripCode = T2.TripCode

Where T1.Tdate <= T2.TDate and

 T1.FromLoc <> T2.FromLoc

d) T1.TripCode = T2.TripCode

Where T1.FromLoc = T2.ToLoc and

 T1.Tdate <> T2.TDate

Subquestion 2

SELECT clause is very flexible. The same result as above Subquestion 1 can be obtained

by the following SQL statement. From the answer group below, select the correct answer

to be inserted into the blank 000A000 in the following SQL statement. Note that part of

the conditions are intentionally shaded by .

Select T1.TripCode, T1.TDate, T1.TspName, T1.Qty-T2.Qty Qty from

where T1.TripCode = T2.TripCode and

 T1. T2. and

 T1. T2. .

TripCode TspName Qty

T-001 Bago 70

T-002 Mhaw Bi 150

T-003 Insein 220

- 11 -

Answer group

a) Select * From TransferHis T1

left join TransferHis T2 on T1.TripCode=T2.TripCode

b) (Select * From TransferHis) T1, (Select * From TransferHis) T2

c) (Select * From TransferHis) T1

union (Select * From TransferHis) T2

d) (Select TripCode, TDate, TspName, FromLoc, ToLoc, Qty

From TransferHis) T1

union all

(Select TripCode, TDate, TspName, FromLoc, ToLoc, Qty

From TransferHis) T2

Subquestion 3

The result of the above Subquestion 2 is inserted into a Table TripSales with the fields

TripCode, TspName and Qty. Then, another SQL statement is created to choose a record

that has the second largest sales quantity. From the answer group below, select the correct

answer to be inserted into the blank 000A000 in the following SQL statement.

Select * From TripSales

Where Qty in

(

)

Answer group

a) Select Qty From TripSales

Where Qty <> (Select max(Qty) from TripSales)

b) Select Qty From TripSales

Where Qty not in (Select max(Qty) From TripSales)

c) Select max(Qty) From TripSales

d) Select max(Qty) From TripSales

Where Qty not in (Select max(Qty) From TripSales)

- 12 -

Q4. Read the following description concerning a backbone network, and then answer

Subquestions 1 through 4.

The Figure below shows a network configuration of a system development company.

Internet

PSTN

128Kbps Leased Line

MODEMsIP Address:
194.133.129.145

DNS-HTTP
SERVER

IP address:
194.133.129.14x

HTTP SERVER
S0

Eth1

Eth0

Eth1

Eth0
Console Cable

Dial-up ComputersFigure 1: CENTER BACKBONE

Angola Telecom

Internal MODEMs

226

1

3

4X

FW 1

Inside: 172.30.2.2

U
T

P
 C

a
b

le

SW 2

TEST COMPUTER

IP Address:
194.133.129.150

SW 3

HUB 1 HUB 2

1X
2

3X 1X

2X

10BASE-T Ethernet Channel

10OBASE-TX Ethernet Channel

10X,11X,12X

AUI

ADM Group TEC Group

HTEC Group

2X

1X

3X

CENTER LAN

100 BASE
BACKBONE Proxy

ROUTER 1

SW 1

RHL7.2 RHL7.2

Outside: 194.133.129.146
Outside: 172.30.2.241

FW 2

IP Address: 172.30.2.4
W2000:

DHCP & Print Server

CYBER Group

Network: 172.30.2.0 / 24

NetMask: 255.255.255.0

Default Gateway: 172.30.2.2

IP Adds: 172.30.2.1 - 172.30.2.254

Computer
Science
Building

5X

NetMask: 255.255.0.0

IP: 172.16.1.7

Gateway: 172.16.1.1

PAT Global IP: 172.30.2.247
NAT global IP:172.30.2.242 - 172.30.2.246

NAT Global IP: 194.133.129.156 - 194.133.129.157

PAT global IP:194.133.129.158

IP: 194.133.129.147
IP NAT pool: 194.133.129.148
IP local pool:172.30.2.33 - 172.30.2.48

4X

6X

Inside: 172.16.1.1

A

B

C

Figure network configuration

The following table shows some IP addresses on the network 194.133.129.144/28.

Table Some IP addresses on network 194.133.129.144/28

Name Local IP address Global IP address

DNS-auth 194.133.129.145

FW 1 172.30.2.2 194.133.129.146

Internal MODEMs 172.30.2.33 - 172.30.2.48 194.133.129.147

ASYNCH 1 Dial-up 194.133.129.152

ASYNCH 2 Dial-up 194.133.129.153

ASYNCH 3 Dial-up 194.133.129.154

ASYNCH 4 Dial-up 194.133.129.155

- 13 -

Subquestion 1

From the answer group below, select the appropriate IP address for Default Gateway to be

inserted into the blank 000A000 in the Figure.

Answer group

a) 170.30.2.4 b) 172.16.1.1

c) 172.30.2.2 d) 194.133.129.150

Subquestion 2

From the answer group below, select the appropriate IP address for HTTP Server to be

inserted into the blank 000B000 in the Figure.

Answer group

a) 194.133.129.144 b) 194.133.129.145

c) 194.133.129.146 d) 194.133.129.151

Subquestion 3

From the answer group below, select the appropriate NetMask to be inserted into the blank

000C000 in the Figure.

Answer group

a) 255.0.0.0 b) 255.255.0.0

c) 255.255.2.0 d) 255.255.255.0

Subquestion 4

From the answer group below, select the appropriate broadcasting address for the network

shown in the Table.

Answer group

a) 194.133.129.156 b) 194.133.129.157

c) 194.133.129.158 d) 194.133.129.159

- 14 -

Q5. Read the following description concerning program design, and then answer

Subquestions 1 and 2.

Company B manufactures dairy products whose main ingredient is milk, such as butter,

cheese, and yogurt.

Milk is procured from Dairy farms J, K, and L, and kept in separate tanks. It is decided by

the manufacturing plan whether milk from a single dairy farm is used, or milk with a

standard mixing ratio is used, for each manufacturing unit. A lot number is assigned to one

manufacturing unit, by which manufacturing date and type of product can be distinguished.

Company B has decided to create a program that calculates the required amount of milk

from each dairy farm for each manufacturing date according to its manufacturing plan.

[Explanation of Required Amount File]

For each manufacturing date, product code, and lot number, decided by the manufacturing

plan, the “required amount” (positive integer value) of the ingredient milk and the “dairy

farm code”, which indicates whether the milk comes from one dairy farm or is mixed, are

recorded. The dairy farm code is “J”, “K”, or “L” (for dairy farm J, K, or L, respectively)

or “M” for “mixed”.

Figure 1 shows the format of the required amount file. The records are sorted in ascending

order by “manufacturing date”, “product code”, and “lot number”, in this order of priority.

Figure 1 Format of the Required Amount File

[Explanation of Standard Mixing Ratio File]

This is an indexed file with “product code” as the key. For each product, the standard

mixing ratio of the milk from each dairy farm is recorded such that the total is 100%

(integer values between 0 and 100, inclusive).

Figure 2 shows the format of the standard mixing ratio file.

Figure 2 Format of the Standard Mixing Ratio File

[Explanation of Total Amount File]

For each manufacturing date, the required amount of milk from each dairy farm is

calculated and is recorded as the total required amount.

Manufacturing
Date

Product
Code

Lot Number
Required Amount

of Milk
Dairy Farm Code

Product Code % of J % of K % of L

- 15 -

Figure 3 shows the format of the total amount file.

Figure 3 Format of the Total Amount File

[Program Description]

The program reads the required amount file and performs one of the processes (1) through

(3) for each record.

(1) If the dairy farm code is “M”, it is “mixed”, so the program calculates the required

amount from each of the dairy farms J, K, and L, using the information in the

standard mixing ratio file and the required amount file. In this calculation, any

decimal parts are rounded off, and the rounding errors are corrected by the required

amount of milk from dairy farm L.

(2) If the dairy farm code is either “J”, “K”, or “L”, it means a “single farm”, so the

entire required amount comes from dairy farm J if the code is “J”; from dairy farm K

if the code is “K”; and from dairy farm L if the code is “L”.

(3) If the dairy farm code is not “J”, “K”, “L” nor “M”, it is an error, so the content of

the record is written to the error file.

Except for error cases, the required amount of milk from each of the dairy farms J, K, and

L is calculated for each manufacturing date and is written to the total amount file.

Figure 4 shows the input/output relational diagram, and Figure 5 shows the module

structure.

Totaling the
Required
Amount

Standard Mixing
Ratio File

Error File

Required
Amount File

Total Amount
File

Figure 4 Input/Output Relational Diagram

Manufacturing
Date

Required Amount
from J

Required Amount
from K

Required Amount
from L

- 16 -

Figure 5 Module Structure

Subquestion 1

Figure 6 shows a flowchart of the main process and calculation of the required amount.

From the answer groups below, select the correct answers to be inserted into the blanks
000A000 in Figure 6.

Yes

Start main process

Pre-process

A

Repeat: End of the
required amount file
or

Totaling process

Post-process

End of main process

Start calculating the required
amount

B

Error

End of calculating the required
amount

Single Farm

Mixed

No

Repeat

C
Yes

No

Figure 6 Flowchart of Main Process and Calculation of Required Amount

- 17 -

Answer group for A

a) manufacturing date is changed

b) product code is changed

c) dairy farm code is changed

d) lot number is changed

Answer group for B and C

a) (dairy farm code ≠ “J”) or (dairy farm code ≠ “K”) or (dairy farm code ≠ “L”)

b) (dairy farm code ≠ “M”) or ((dairy farm code ≠ “J”) and (dairy farm code ≠ “K”)

and (dairy farm code ≠ “L”))

c) (dairy farm code ≠ “M”) or (dairy farm code ≠ “J”) or (dairy farm code ≠ “K”)

or (dairy farm code ≠ “L”)

d) (dairy farm code = “J”) or (dairy farm code = “K”) or (dairy farm code = “L”)

e) (dairy farm code = “M”) or ((dairy farm code ≠ “J”) and (dairy farm code ≠ “K”)

and (dairy farm code ≠ “L”))

f) dairy farm code ≠ “M”

g) dairy farm code = “M”

Subquestion 2

Figure 7 shows a flowchart of mixing. From the answer group below, select the correct

answer to be inserted into the blank 000A000 in Figure 7.

Start mixing

Read the standard mixing ratio file

wj ← required amount of milk ×
Percentage of J / 100

w ←

wk ← required amount of milk ×
Percentage of K / 100

D

End of mixing

Note: “required amount of milk” is the value read from the required amount file.
 “percentage of J” and “percentage of K” are the values in the standard mixing ratio file.
 The required amount of milk from dairy farms J, K, and L are stored into wj, wk, and w,

respectively.
 In division, any decimal parts of the quotient are rounded off.

Figure 7 Flowchart of Mixing

- 18 -

Answer group

a) required amount of milk - wj

b) required amount of milk - wj - wk

c) required amount of milk - wk

d) required amount of milk × (100 - percentage of J - percentage of K) ÷ 100

e) required amount of milk × percentage of L ÷ 100

- 19 -

Q6. Read the following description of programs and the programs themselves, and then

answer Subquestions 1 and 2.

The two programs, compress_Stream and decompress_Stream, implement the LZW

compression and decompression algorithms. LZW is a dictionary-based compression and

decompression technique. When compressing a data stream, it encodes the stream by

referencing a dictionary; it outputs a stream of code numbers that correspond to a string

entry in the dictionary, into the compressed file. When decompressing a data stream, it

follows the same process in the reverse order. The algorithm is simple and takes advantage

of frequently recurring sub-strings in the data stream.

[Description of Program 1 (compress_Stream)]

Compression begins with the dictionary that initially contains all possible single character

entries for a given input stream. Then, the program reads the input stream one character at

a time, and outputs a code number that corresponds to an entry’s index position in the

dictionary.

Each time the program comes across a new sub-string (for example, “AB”), the program

adds it to the dictionary. Meanwhile, each time the program comes across a character or

sub-string, which has come across previously, the program proceeds onto the next

character and concatenates it with the current character or current sub-string to get a new

sub-string. The next time the program comes across that sub-string, the program outputs

its corresponding code number.

Assuming that the array dictionary used in the program is defined externally, and all

possible single characters appear in the given input stream have already been loaded.

Here is an execution example. When the input stream contains " A B B A B A B A K ",

then the compressed result " 1 2 2 4 7 3 " is written to the output stream. About this

example, initial contents of the dictionary is shown in table 1, final contents of the

dictionary is shown in table 2, and a summary of the process is shown in table 3.

- 20 -

Table 1 Initial contents of the dictionary Table 2 Final contents of the dictionary

Table 3 Summary of the process (Program 1)

[Program 1]

 Program compress_Stream

 string type: s, code /* code: index position of a dictionary entry */
 character type: ch

 procedure: getInStream(char)

 /* reads the next character into char from input stream */

 procedure: putOutStream(code)

 /* writes the encoded code to output stream */

 procedure returns integer type: addEntry(string, dictionary)

 /* adds string into dictionary and returns its index position */
 procedure returns integer type: findEntry(string, dictionary)

 /* finds string in dictionary and returns its index position */
 procedure returns integer type: stringExists(string, dictionary)

 /* if string exists in dictionary, returns 1; else returns 0 */

Index Position Contents of the Entry Index Position Contents of the Entry
0 '' (null) 0 '' (null)
1 A 1 A

2 B 2 B

3 K 3 K

 4 A B

 5 B B

 6 B A

 7 A B A

 8 A B A K

Current String
s

Input Character
ch

Is s+ch in
the dictionary

Code Output
Dictionary

Index Entry
'' A Yes

A B No 1 4 A B

B B No 2 5 B B

B A No 2 6 B A

A B Yes

A B A No 4 7 A B A

A B Yes

A B A Yes

A B A K No 7 8 A B A K

K 3

- 21 -

• s ← '' /* initialize s as a null string */
• code ← 0 /* initialize code to 0 corresponding to null string */
• getInStream(ch) /* read the first character */
 ch ≠ '' /* loop while the next character exists (not end of data) */
  stringExists(s+ch, dictionary) = 1 /* “+” means “concatenation” */
 • s ← s + ch

 • code ← findEntry(s, dictionary)

 • putOutStream(code)

 • addEntry(s+ch, dictionary)

 • s ← ch
 

 • getInStream(ch) /* read the next character */


• code ← findEntry(s, dictionary)

• putOutStream(code)

Subquestion 1

From the answer group below, select the correct answers to be inserted into the blanks
000A000 in the following description.

Program 1 is executed for the following two cases:

(1) When " A A A A " (4 consecutive A’s) is given from the input stream, the compressed

result " 000A000 " is written to the output stream.

(2) When " A A A A A " (5 consecutive A’s) is given from the input stream, the

compressed result " 000B000 " is written to the output stream.

The dictionary initially contains '' (null) and A at index positions 0 and 1, respectively.

Answer group
a) 1 2 1 b) 1 2 2 c) 1 3

d) 1 4 e) 3 1 f) 4 1

[Description of Program 2 (decompress_Stream)]

The decompression process follows the same path as the compression in reverse order,

however, with slight difference. One of these is that it does not need the final contents of

the dictionary; it needs only the initial contents.

Decompression begins with reading a code from the compressed input stream, looks for the

corresponding sub-string in the dictionary, and then writes this sub-string to the output

stream. The first character of this sub-string is concatenated to the current string, and the

concatenated string is added to the dictionary. This process rebuilds the dictionary that was

used in the compression stage. The decoded string becomes the current string, and then,

the process iterates.

- 22 -

Here is an execution example. When the compressed result " 1 2 2 4 7 3 " is given

from the input stream, then the decompressed string " A B B A B A B A K " is written to

the output stream. About this example, a summary of the process is shown in table 4.

Assuming that the array dictionary used in the program is defined externally, and

contains the initial values as shown in Table 1.

Table 4 Summary of the process (Program 2)

*Note: When “Is newcode in the dictionary” = Yes, s is updated twice.

Thus, the input stream " 1 2 2 4 7 3 " is decoded as " A B B A B A B A K ". It may

also be noted that the dictionary was rebuilt with the same entries during the compression

stage.

[Program 2]

 Program decompress_Stream

 string type: s

 character type: ch

 integer type: oldcode, newcode /* previously and newly read code */
 procedure: getInStream(code)

 /* reads the next code from input stream */

 procedure: putOutStream(string)

 /* writes decoded string to output stream */

 procedure returns character type: getFirstChar(s)

 /* returns the first character of string s */
 procedure returns integer type: addEntry(string, dictionary)

 /* adds string into dictionary and returns its index position */
 procedure returns string type: getString(code, dictionary)

 /* returns the string at the index position code in dictionary */
 procedure returns integer type: codeExists(code, dictionary)

 /* if code exists in dictionary, returns 1; else returns 0 */

oldcode newcode
Is newcode in
the dictionary

S *Note String
Output

ch
Dictionary

(1st) (2nd) Index Entry
1 A A

1 2 Yes B A B B 4 A B

2 2 Yes B B B B 5 B B

2 4 Yes A B B A B A 6 B A

4 7 No A B A B A A 7 A B A

7 3 Yes K A B A K K 8 A BA K

- 23 -

• getInStream(oldcode)

• s ← getString(oldcode, dictionary)

• putOutStream(s)

• getInStream(newcode)

 newcode ≠ '' /* loop while the next code exists (not end of data) */
  codeExists(newcode, dictionary) = 1

 • s ← getString(000C000 , dictionary)
 • putOutStream(s)

 • ch ← getFirstChar(s)

 • s ← getString(000D000 , dictionary)
 • s ← getString(oldcode, dictionary)

 • ch ← getFirstChar(s)

 • putOutStream(000E000)
 

 • addEntry(s+ch, dictionary) /* “+” means “concatenation” */
 • oldcode ← newcode

 • getInStream(newcode)


Subquestion 2

From the answer group below, select the correct answers to be inserted into the blanks
000A000 in Program 2.

Answer group
a) ch b) ch + s

c) s d) s + ch

e) newcode f) oldcode

- 24 -

 Concerning questions Q7 and Q8, select one of the two questions.
 Then, mark s in the selection area on the answer sheet, and answer the question.

 If two questions are selected, only the first question will be graded.

Q7. Read the following description of a C program and the program itself, and then answer

Subquestion.

Ordinary notation for writing expressions is called infix, where the operator is placed

between two values. Another notation for expressions, one that is useful for stack-oriented

evaluation, is called Reverse Polish notation, where the operator is placed after two values.

Here are some examples:

 Ordinary notation Reverse Polish notation

 1 + 2  1 2 +

 1 * 2 + 3  1 2 * 3 +

 (1 + 2) * (3 + 4)  1 2 + 3 4 + *

[Program Description]

The program evaluates the Reverse Polish expression using the two-stack algorithm.

Polish stack (hereinafter, P) contains the Reverse Polish expression, and the Evaluation

stack (hereinafter, E) stores the intermediate values during execution.

Here is the two-stack algorithm that evaluates a Reverse Polish expression.

Step 1. If P is empty, stop execution. The answer is obtained at the top of E.

Step 2. If P is not empty, pop P and store it into d. (d, d1 and d2 are used to hold data)

Step 3. If d is a value, push it into E.

Step 4. If d is an operator, pop E twice, store the first one into d2 and the second one

into d1. Execute operation d using two values d1 and d2, and push the result

into E. Go to step 1.

The program evaluates the expression “12 3 - 1 2 * +”, and outputs the answer 11.

The expression is placed in the character array str[]. Each value or operator is separated

by comma and space, like “12, 3, -, 1, 2, *, +”.

This algorithm is illustrated in the following diagram, using the given expression.

- 25 -

The program accepts +, -, and * as valid operators. Assuming that the given expression in

str[] is correct, and irregular status of stacks will not occur during the execution.

Functions and their purposes used in the program are as follows.

Function Purpose

main
To test the program using pre-defined reverse Polish
expression: “12 3 - 1 2 * +”

evaluate To evaluate the expression in P
push To push data into the stack
pop To pop data from the stack

fill
To store each value and operator into the stack from a
character string that contains the expression

empty Returns true boolean value if the stack is empty
full Returns true boolean value if the stack is full
initialize To nullify the stack and set cnt to 0

[Program]

#include <assert.h>

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#define EMPTY 0

#define FULL 10000

struct data {

 enum {operator, value} kind;

 union {

 char op;

 int val;

 } u;

};

typedef struct data data;

typedef enum {false, true} boolean;

struct elem {

 data d;

 struct elem *next;

};

typedef struct elem elem;

- 26 -

struct stack {

 int cnt;

 elem *top;

};

typedef struct stack stack;

boolean empty(const stack *stk);

int evaluate(stack *polish);

void fill(stack *stk, const char *str);

boolean full(const stack *stk);

void initialize(stack *stk);

data pop(stack *stk);

void push(data d, stack *stk);

char str[] = "12, 3, -, 1, 2, *, +";

void main(void)

{

 stack polish;

 printf("\n%s%s\n","Reverse Polish Expression: ", str);

 fill(&polish, str);

 printf("\n%s%d\n", "Evaluated Value: ", evaluate(&polish));

 return;

}

int evaluate(stack *polish)

{

 data d, d1, d2;

 stack eval;

 initialize(&eval);

 while (!empty(polish)) {

 d = 00000A00000 ;
 switch (d.kind) {

 case value:

 push(d, &eval);

 break;

 case operator:

 d2 = pop(&eval);

 d1 = 00000B00000 ;
 d.kind = value;

 switch (d.u.op) {

 case '+':

 d.u.val = d1.u.val + d2.u.val;

 break;

- 27 -

 case '-':

 d.u.val = d1.u.val - d2.u.val;

 break;

 case '*':

 d.u.val = d1.u.val * d2.u.val;

 }

 00000C00000 ;
 }

 }

 d = pop(&eval);

 return d.u.val;

}

void push(data d, stack *stk)

{

 elem *p;

 p = malloc(sizeof(elem));

 p -> d = d;

 00000D00000 ;
 stk -> top = p;

 00000E00000 ;
}

data pop(stack *stk)

{

 data d;

 elem *p;

 d = stk -> top -> d;

 p = stk -> top;

 stk -> top = stk -> top -> next;

 00000F00000 ;
 free(p);

 return d;

}

void fill(stack *stk, const char *str)

{

 const char *p = str;

 char c1, c2;

 boolean b1, b2;

 data d;

 stack tmp;

 initialize(stk);

 initialize(&tmp);

- 28 -

 while (*p != '\0') {

 while (isspace(*p) || *p == ',')

 /* isspace returns non-zero value if *p is a white-space character */
 ++p;

 b1 = (boolean) ((c1 = *p) == '+' || c1 == '-' || c1 == '*');

 b2 = (boolean) ((c2 = *(p + 1)) == ',' || c2 == '\0');

 if (b1 && b2) {

 d.kind = operator;

 d.u.op = c1;

 }

 else {

 d.kind = value;

 assert(sscanf(p, "%d", &d.u.val) == 1);

 /* assert evaluates the expression; if it is true, then continue, else abort */
 }

 if (!full(&tmp))

 push(d, &tmp);

 while (*p != ',' && *p != '\0')

 ++p;

 }

 while (!empty(&tmp)) {

 d = pop(&tmp);

 if (!full(stk))

 push(d, stk);

 }

}

boolean empty(const stack *stk)

{

 return ((boolean) (stk -> cnt <= EMPTY));

}

boolean full(const stack *stk)

{

 return ((boolean) (stk -> cnt >= FULL));

}

void initialize(stack *stk)

{

 stk -> cnt = 0;

 stk -> top = NULL;

}

- 29 -

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks
000A000 in the above Program.

Answer group for A through C
a) pop(eval) b) pop(&eval)

c) pop(polish) d) pop(&polish)

e) pop(d2) f) push(d, &eval)

g) push(d, &polish) h) push(d2, &eval)

Answer group for D and E
a) p -> next = d b) p -> next = stk -> top

c) stk -> cnt d) stk -> cnt++

e) stk -> top = p -> next f) stk -> top = *p -> next

Answer group for F
a) stk -> cnt++ b) stk -> cnt--

c) stk -> top = p -> next d) stk -> top = *p -> next

- 30 -

Q8. Read the following description of a Java program and the program itself, and then

answer Subquestion.

[Program Description]

The program calculates and prints out volume, weight and cost for shipment of boxes.

In this calculation, values of the width, height, depth, weight and cost of the Box will be

created by constructor, and data will be stored using multi-level inheritance hierarchy of

class. Also, in the task, super() method is used in the class hierarchy, so all construction

methods of the super class will be called.

The program consists of methods of a base class and its derived class, and main() method.

The class Box has 4 constructor functions including silent, with parameter, clone (copy),

and cube. volume() function for the calculation of volume of a box is defined by variables

width, height and depth. Data is transferred by constructor functions in main().

When executing this program, the following list will be printed out.

Volume of Shipment1 : 2000.0

Weight of Shipment1 : 12.0

Cost of Shipment1 : $5.56

Volume of Shipment2 :1000.0

Weight of Shipment2 :3.65

Cost of Shipment2 : $2.5

Volume of Shipment3 :2000.0

Weight of Shipment3 :12.0

Cost of Shipment3 : $5.56

Volume of Shipment4 :-1.0

Weight of Shipment4 :-1.0

Cost of Shipment4 : $-1.0

- 31 -

[Program]

class Box {

 private double width;

 private double height;

 private double depth;

 Box(00000A00000) {
 width = ob.width;

 height = ob.height;

 depth = ob.depth;

 }

 Box(double w, double h, double d) {

 width = w;

 height = h;

 depth = d;

 }

 Box() {

 width = -1;

 height = -1;

 depth = -1;

 }

 Box(00000B00000) {
 width = height = depth = len;

 }

 double volume() {

 return width * height * depth;

 }
}

class BoxWeight extends 00000C00000 {
 double weight;

 BoxWeight(00000D00000) {
 super(ob);

 weight = 00000E00000 ;
 }

 BoxWeight(double w, double h,double d, double m) {

 super(w, h, d);

 weight = m;

 }

 BoxWeight() {

 super();

 weight = -1;

 }

 BoxWeight(00000F00000) {
 super(len);

 weight = m;

 }
}

- 32 -

class 00000G00000 extends BoxWeight {
 double cost;

 Shipment(Shipment ob) {

 super(ob);

 cost = ob.cost;

 }

 Shipment(double w, double h, double d, double m, double c) {

 super(w, h, d, m);

 cost = c;

 }

 Shipment() {

 super();

 cost = -1;

 }

 Shipment(double len, double m, double c) {

 super(len, m);

 cost = c;

 }

}

class ShipmentSystem {

 public static void main(String args[]) {

 Shipment shipment1 = new Shipment(10, 20, 10, 12, 5.56);

 double vol;

 vol = shipment1.volume();

 System.out.println("Volume of Shipment1 :" + vol);

 System.out.println("Weight of Shipment1 :" + shipment1.weight);

 System.out.println("Cost of Shipment1 : $" + shipment1.cost);

 System.out.println();

 Shipment shipment2 = new Shipment(10, 3.65, 2.5);

 vol = shipment2.volume();

 System.out.println("Volume of Shipment2 :" + vol);

 System.out.println("Weight of Shipment2 :" + shipment2.weight);

 System.out.println("Cost of Shipment2 : $" + shipment2.cost);

 System.out.println();

 Shipment shipment3 = new Shipment(shipment1);

 vol = shipment3.volume();

 System.out.println("Volume of Shipment3 :" + vol);

 System.out.println("Weight of Shipment3 :" + shipment3.weight);

 System.out.println("Cost of Shipment3 : $" + shipment3.cost);

 System.out.println();

- 33 -

 Shipment shipment4 = new Shipment();

 vol = shipment4.volume();

 System.out.println("Volume of Shipment4 :" + vol);

 System.out.println("Weight of Shipment4 :" + shipment4.weight);

 System.out.println("Cost of Shipment4 : $" + shipment4.cost);

 }

}

Subquestion

From the answer groups below, select the correct answers to be inserted into the blanks
000A000 in the above Program.

Answer group for A and B
a) Box ob b) BoxWeight ob

c) double len d) double w, double h, double d

e) len f) ob

g) Shipment ob h) void

Answer group for C and G
a) Box b) Box()

c) BoxWeight d) BoxWeight()

e) Shipment f) Shipment()

g) ShipmentSystem h) ShipmentSystem()

Answer group for D and F
a) Box ob b) BoxWeight ob

c) double len d) double len, double m

e) super(len) f) super(len, m)

g) super(len, m, c) h) super(w, h, d)

Answer group for E
a) depth b) height

c) ob.depth d) ob.height

e) ob.weight f) ob.width

g) weight h) width

