

April 2009

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 - Q5 Q6 , Q7 Q8 , Q9

Question Selection Compulsory Select 1 of 2 Select 1 of 2

Examination Time 13:30 - 16:00 (150 minutes)

Instructions:
1. Use a pencil. If you need to change an answer, erase your previous answer completely and

neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or write
on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection (Q6-Q7 and Q8-Q9)
Mark the S of the question you select to answer in the “Selection Column” on
your answer sheet.

(4) Answers
Mark your answers as shown in the following sample question.

[Sample Question]

In which month is the spring Fundamental IT Engineer Examination conducted?
Answer group
a) March b) April c) May d) June

Since the correct answer is “b)” (April), mark your answer sheet as follows:

[Sample Answer]

1

Do not open the exam booklet until instructed to do so.

Inquiries about the exam questions will not be answered.

ウA C D

Company names and product names appearing in the test questions are trademarks or registered trademarks of

their respective companies. Note that the ® and ™ symbols are not used within.

[Explanation of the Pseudo-Code Description Format]

Pseudo-Language Syntax Description

o Declares names, types, etc. of procedures,
variables, etc.

 Variable ← Expression Assigns the value of an Expression to a Variable.

Conditional expression
 Process

A selection process.
If the Conditional expression is True, then
Process is executed.

Conditional expression
 Process 1

 Process 2

A selection process.
If the Conditional expression is True, then
Process 1 is executed.
If it is False, then Process 2 is executed.

Conditional expression
 Process

A repetition process with the termination condition
at the top.
The Process is executed while the Conditional
expression is True.

[Operator]

Operation Operator Priority

Unary operation + - not High

Multiplication and division
operation

* /

Addition and subtraction
operation

+ -

Relational operation > < >= <= =

Logical product and

Logical sum and
Exclusive logical sum

Or xor Low

 [Logical type constant]

true false

- 1 -

Questions 1 through 5 are all compulsory. Answer every question.

Q1 Read the following description of a program and the program itself, and then answer the

Subquestion.

[Program Description]

There are three functions named Preorder, Inorder and Postorder. Each function visits

the nodes of a binary tree by calling itself recursively, and prints out the node numbers visited.

For each function, input parameter node indicates a node number. Parameters node.left

and node.right used in each function indicate the next node number on the left side and on

the right side respectively. If the next node does not exist, null is set for these parameters.

In the Figure below, for example, if node=2, then node.left=null and node.right=4.

Figure Example of a Binary Tree

[Program]

/* Function Preorder */
O Input parameter: node

O Function Preorder(node)

  node!=null /* if(node!=null) */

  Print “”,node

  Preorder(node.left)

  Preorder(node.right)

 

- 2 -

/* Function Inorder */
O Input parameter: node

O Function Inorder(node)

  node!=null /* if(node!=null) */

  Inorder(node.left)

  Print “”,node

  Inorder(node.right)

 

/* Function Postorder */
O Input parameter: node

O Function Postorder(node)

  node!=null /* if(node!=null) */

  Postorder(node.left)

  Postorder(node.right)

  Print “”,node

 

Subquestion

From the answer group below, select the correct answers to be inserted in the blanks
 in the following description.

For the binary tree shown in the Figure, when Preorder(1) is executed, then A will

be printed out as a result. Similarly, when Inorder(1) is executed, the result will be
B , and when Postorder(1) is executed, the result will be C .

Answer group

a) 1243567

b) 1264357

c) 2413657

d) 2416573

e) 4267531

f) 4276531

- 3 -

Q2 Read the following description about planning of production, and then answer the
Subquestions 1 through 3.

The enterprise M produces car’s tires. It receives customer orders, do planning of a

production. For a production of tires, wholly the necessary materials are available on the

stock. The crucial materials, like rubber and carbon powder, usually have the grand

quantity and have grand number of minimum on stock. Assume that there is no problem

with delay time of the orders for the missing materials.

[Procedure Description]
1) The description of Summary Products by Customer is shown in the table SPC.

SPC

TIRE_ID ORDER_QUANTITY CUSTOMER_ID

2) The description of tire’s types and the quantity of each crucial material (there are 7

materials, named MAT_A, MAT_B, MAT_C, MAT_D, MAT_E, MAT_F and MAT_J

are needed to be managed) for the production of an amount of a tire’s type is shown in

the Table TIRE, as follows:

TIRE

TIRE_ID PRO_QUANTITY MAT_A MAT_B MAT_C MAT_D MAT_E MAT_F MAT_J

P185R/70HR1 100 10 30 50 1000 60 80 60

The underlined column’s name denotes the primary key.

The columns MAT_A, MAT_B, MAT_C, …, MAT_J define the needed quantity of the

corresponding material for the production of the amount PRO_QUANTITY of the

TIRE_ID type of tires.

The above example shows that the production of 100 tires of type “P185R/70HR13”

needs 10 units of the Material A, 30 units of the Material B, 50 units of the Material C,

…, and 60 units of the Material J.

- 4 -

Subquestion 1

From the answer group below, select the correct answer to obtain the result table

named TotalOrder as shown below. Where, the field SUM_ORDER_QUANTITY is

the total quantity for each tire’s type from all the orders for a planned production.

 TotalOrder

TIRE_ID SUM_ORDER_QUANTITY

Answer group
a) SELECT TIRE_ID, ORDER_QUANTITY into TotalOrder FROM SPC

b) SELECT TIRE.TIRE_ID, ORDER_QUANTITY

into TotalOrder FROM SPC, TIRE

c) SELECT TIRE_ID, SUM(ORDER_QUANTITY) into TotalOrder FROM SPC

d) SELECT SPC.TIRE_ID, SPC.ORDER_QUANTITY

into TotalOrder FROM SPC GROUP BY SPC.TIRE_ID

e) SELECT SPC.TIRE_ID, SUM(ORDER_QUANTITY)

into TotalOrder FROM SPC GROUP BY SPC.TIRE_ID

f) SELECT SPC.TIRE_ID, SUM(ORDER_QUANTITY)

AS SUM_ORDER_QUANTITY

into TotalOrder FROM SPC GROUP BY SPC.TIRE_ID

Subquestion 2

To obtain the total amount of each material which is needed for producing the tires for the

planned production, the following SQL code is executed to get the table TotalMaterial.

SELECT TotalOrder.TIRE_ID, SUM_ORDER_QUANTITY,

((SUM_ORDER_QUANTITY/PRO_QUANTITY) * MAT_A) AS SUM_MAT_A,

((SUM_ORDER_QUANTITY/PRO_QUANTITY) * MAT_B) AS SUM_MAT_B,

((SUM_ORDER_QUANTITY/PRO_QUANTITY) * MAT_C) AS SUM_MAT_C,

((SUM_ORDER_QUANTITY/PRO_QUANTITY) * MAT_D) AS SUM_MAT_D,

((SUM_ORDER_QUANTITY/PRO_QUANTITY) * MAT_E) AS SUM_MAT_E,

((SUM_ORDER_QUANTITY/PRO_QUANTITY) * MAT_F) AS SUM_MAT_F,

((SUM_ORDER_QUANTITY/PRO_QUANTITY) * MAT_J) AS SUM_MAT_J

into TotalMaterial FROM TotalOrder, TIRE

WHERE TotalOrder.TIRE_ID = TIRE.TIRE_ID

- 5 -

From the answer group below, select the correct statement about the number of records of

the table TotalMaterial.

Answer group
a) It is 1.

b) It is equal to the number of orders of the all customers for the planed production.

c) It is equal to the number of records of the table TIRE.

d) It is equal to the number of records of the table TotalOrder.

Subquestion 3

Based on the table TotalMaterial, which is obtained after the execution of the SQL code

shown in Subquestion 2, the following SQL code calculates the sum of each material

needed for the planed production, and creating the TableA.

From the answer group below, select the correct size of the TableA.

SELECT SUM(SUM_MAT_A) AS SUM_MAT_A, SUM(SUM_MAT_B) AS SUM_MAT_B,

SUM(SUM_MAT_C) AS SUM_MAT_C, SUM(SUM_MAT_D) AS SUM_MAT_D,

SUM(SUM_MAT_E) AS SUM_MAT_E, SUM(SUM_MAT_F) AS SUM_MAT_F,

SUM(SUM_MAT_J) AS SUM_MAT_J

into TableA FROM TotalMaterial

Answer group
a) 1 row and 7 columns

b) 7 rows and 1 column

c) 7 rows and 7 columns

d) n rows and 7 columns

e) The number of rows is depending on the tire’s type and 7 columns

- 6 -

Q3 Read the following description about a network configuration, and then answer the

Subquestion.

[Network Topology 1]

Network
Management

Server

Database
Server

Application
Server

DNS
Server

Email
Server

Web
Server

Firewall 2 Firewall 1

D

D

D
D

D

D

D
D

C

PCs

PCs

PCs

PCs

PCs

PCs

PCs

PCs

ISPA

- 7 -

[Network Topology 2]

[Description]

Network Topology 1 is topology of company X. The gateway of company X’s network is the
A device. There are 4 servers (network management, web, DNS and

Email) placed between firewall 1 and firewall 2. The area contains these servers are called
B . Other servers are application server and database server for internal

use of company X. Accessing to the Internet and exchanging/sharing data between the

personal computers in company X are distributed by C and
D .

Company X uses a leased-line provided by the Internet Service Provider (ISP). The global

IPs that the ISP supplies to company X is 203.88.212.144/29. Therefore, company X has
E IP addresses.

- 8 -

Now, according to some bussiness demands, all of six servers (application, database, network

management, web, DNS and Email) could be connected from the Internet. First, the

administrator of company X planned some implementations as in Network Topology 2. But

with this new topology, the problem appears with company X is F .

Subquestion

From the answer groups below, select the correct answers to be inserted in the blanks

 in the above description.

Answer group for A
a) Adapter b) Hub

c) Modem d) Router

Answer group for B
 a) De-Militarized Zone b) External Accessible Zone

 c) Internal Accessible Zone d) Private Zone

Answer group for C and D
 a) Core switch b) Distribution switch

 c) Hub d) Modem

 e) Router

Answer group for E
 a) 4 b) 8

 c) 16 d) 32

Answer group for F
 a) Firewall 1 must be taken away.

b) Firewall 2 must be taken away.

 c) Not enough IP address for assigning to the servers.

 d) The personal computers in company X become less secure than before.

- 9 -

Q4 Read the following description of a program and the program itself, and then answer the

Subquestion.

[Program Description]

Consider the algorithm for a program used to order and output in ascending order the

elements in the array S. S is a structure array, and each element has the following four data

items.

character Name

integer Age

float Height

float Weight

Sample data:

Element no.

0

1

2

3

4

The program will create a binary tree that indicates the order without actually sorting the array

data. Elements will be ordered using Height as the key.

Along with the array S[MAXNUM], two integer arrays Lower[MAXNUM] and Upper[MAXNUM]

are used in the program to represent the binary tree. Here, MAXNUM is the number of data.

Fig 1. shows the execution result of the program for the sample data, where the elements are

arranged in ascending order, with the element numbers in the sequence 3, 1, 0, 4, 2.

Fig 2. shows the contents of the arrays Lower and Upper. The value -1 indicates that there

is no element connected next.

Name Age Height Weight

David Moore 19 162.5 65.4

Lisa Brown 14 158.0 48.4

John Abraham 18 182.0 82.5

Anne Peterson 12 148.0 46.8

Jason Bates 16 178.5 70.0

- 10 -

Element No. Lower Upper

0 3 4

1 -1 -1

2 -1 -1

3 -1 1

4 -1 2

Initially, the elements are connected on the “Upper” side in the order in which they appeared

in the definition of the structure array S, creating the binary tree shown in Fig 3.

Root

Fig 3. Connection Status Prior to Sorting

Next, the program calls the recursive function BinTreeSort to sort the elements in the

binary tree according to Height in ascending order. The parameter is the element number of

the root. The prototype for the function BinTreeSort is as follows:

BinTreeSort (integer)

Lastly, the program calls the recursive function DisplayData to output the contents of the

structure array S in ascending order according to Height, following the binary tree. The

parameter is the element number of the root. The prototype for the function DisplayData is

as follows:
DisplayData (integer)

0

3 4

1 2

Fig 1. Ascending Order

Arrangement of Elements

Fig 2. Representation of

Array Content

0 1 2 3 4

- 11 -

[Program]

Main Algorithm

Main Program ()
 MAXNUM ← 5
 Index ← 0
 While (Index < MAXNUM)

 Upper[Index] ← Index + 1
 Lower[Index] ← -1
 Index ← Index + 1
 Endwhile

 Upper[MAXNUM - 1] ← -1
 BinTreeSort(0)

 DisplayData(0)

BinTreeSort Algorithm

Function BinTreeSort (Root)
 Data ← Upper[Root]
 If (Data = -1)

 Exit

 Endif

 Upper[Root] ← -1
 While (Data != -1)

 Next ← A

 If (S[Data].Height >= S[Root].Height)

 Upper[Data] ← B

 Upper[Root] ← Data
 Else

 Upper[Data] ← Lower[Root]
 Lower[Root] ← C

 Endif

 Data ← Next
 Endwhile

 Data ← Upper[Root]
 If (Data != -1)

 BinTreeSort(Data)

 Endif

 Data ← Lower[Root]
 If (Data != -1)

 BinTreeSort(Data)

 Endif

- 12 -

DisplayData Algorithm

Function DisplayData (Root)

 If (Root = -1)

 Exit

 Endif

 DisplayData(D)

 Print S[Root].Name, S[Root].Age, S[Root].Height, S[Root].Weight

 DisplayData(Upper[Root])

Subquestion

From the answer group below, select the correct answers to be inserted in the blanks

 in the above program.

Answer group
 a) -1

 b) Data

 c) Lower[Data]

 d) Lower[Root]

 e) Next

 f) Root

 g) Upper[Data]

 h) Upper[Root]

- 13 -

Q5 Read the following description concerning a program design, and then answer the

Subquestions 1 and 2.

Company Y implements a customer support system. Part of the system deals with assigning

personnel to the different requests. The section chief uses this part of the system, and

monitors and assigns the different requests.

[File Description]
(1) Customer code, password, location, address, customer name and phone no are

recorded to a Customer file. The customers log into the system and enter their

requests.

The record format of the Customer file:

(2) Personnel file contains personnel code, password, expertise, tel no and personnel

name.

The record format of the Personnel file:

Personnel Code Password Expertise Tel No Personnel Name

(3) Customer requests are entered by the customer indicating the request (or complaint)

and due date. A dispatcher further processes it to create the Request file. The

dispatcher diagnoses each request and identifies the priority level and the expertise

needed. Requests with the earliest due date are scheduled first. Then, for those with

the same due dates, tasks with higher priority level are scheduled first. Completed

requests are removed from the Request file.

The record format of the Request file:

Request Code Customer

Code

Date of

Request

Expertise

Needed

Priority

Level

Due Date Assigned

(4) The section chief assigns the requests to personnel with matching expertise. This

creates an entry in the Assignment file. The section chief looks for the earliest

available date that a given personnel, with the matching expertise, can do the task. All

requests with due dates within 7 days of the current day are called critical requests.

These requests must be assigned. An error will be indicated if this condition is not

met. Once a request is completed, the completion date is entered.

The record format of the Assignment file:

Request Code Personnel Code Visit Date Job Status Completion Date

Customer Code Password Location Address Customer Name Phone No

- 14 -

[Program Description]
(1) The section chief logs into the system and presses the Commit function key (F10). A

valid login immediately goes to Personnel view. Otherwise, it remains the same.

(2) The Request file is read and transferred to a temporarymatrix called assignment

calendar. This is used as the working table for the section chief. Once the

assignments are completed, the whole matrix is committed and the Assignment file is

updated.

(3) Personnel view - One view presents a list of personnel in table form with their

corresponding assignments. Blank cells mean no assigned tasks.

a. The first column contains the personnel code followed by the expertise. The

remaining columns will contain the request codes assigned for that day. 01 is

for the current day, and 15 is for the 15th day from the current day.

The Assignment Calendar (with sample codes):

Personnel Code Expertise 01 02 03 04 …. 14 15

PR-01A27 TECH

PR-01B12 UI

PR-01E06 TECH

PR-21C11 ELX

b. The section chief encodes the request codes into the empty grids of the matrix

corresponding to date assignments. Personnel can get several assignments

across different dates.

c. When the Check function key (F3) is used, the inputs are checked. The

primary display is set as black on white. Request codes turn “blue” if they are

scheduled after the due date. Request codes turn “green” if they are assigned

to personnel without the matching expertise.

Then, the following message line is displayed.

 “ERROR: ## unassigned critical requests. WARNING: ## unmatched

expertise, ## late services.” (## represents a 2 digit number)

(4) Request view - This view-only screen displays the list of all uncompleted requests in

the Request file. All requests whose due dates are less than 7 days of the current day

are colored “red”. This is used as a quick reference window in making the schedule.

The Request function key (F5) opens the window while the Escape key closes it

again and brings it back to Personnel view.

(5) Customer view - This view-only screen displays customer requests and the assigned

dates in table form. The first column contains the customer name, the second

contains the request code, and the remaining columns represents the dates from the

- 15 -

Escape

Login

Customer

View

Personnel

View

Request

View

Exit

Screen

F10

F10

F6

F5

current day to the 15th day. The personnel code is placed in the corresponding date

column of the visit. An * (asterisk) is placed in the column when the request is due.

If the due date and the visit date are the same, only the personnel code will be seen.

The Customer function key (F6) opens the window, while the Escape key closes it

again and brings it back to Personnel view.

(6) Commit function key (F10) commits the whole session, updates the files, and displays

the Exit Screen which displays the number of updates made in the files. If errors are

still exist, then no commit will occur, and will remain on the same screen.

Fig 1. Overview of the System Operation

Fig 2. Flowchart for Preparing Personnel View (1 of 2)

START

Read
Request File

End of
File

M

R

0  Total_CR

Y

N

M
Y

Total_CR +1  Total_CR

M

N

M
>=

<

…Count
Critical
Requests

 Assigned

 DueDate :
CurrentDate + 7

- 16 -

Fig 2. Flowchart for Preparing Personnel View (2 of 2)

0  Cnt_Late
0  Cnt_Nomatch

Request code

A

Determine Visit date

STOP

“blue” Color.Request code
Cnt_Late + 1  Cnt_Late

Request code

>

Display
Message Line

… For each request code
 in the Assignment calendar

R

C DueDate : CurrentDate + 7
<

B
“green”  Color.Request code

D

≠

<=

>=

=

- 17 -

Subquestion 1

From the answer groups below, select the correct answers to be inserted in the blanks

 in Fig 2.

Answer group for A and B
a) Completion date : Visit date

b) Due date : Visit date

c) Expertise : Expertise needed

d) Priority level : Expertise needed

e) Visit date : Due date

Answer group for C and D
a) Cnt_Nomatch + 1  Cnt_Nomatch

b) Cnt_Nomatch – 1  Cnt_Nomatch

c) Total_CR + 1  Total_CR

d) Total_CR - 1  Total_CR

e) “red”  Color.Request code

Total_CR + 1  Total_CR

f) “red”  Color.Request code

Total_CR - 1  Total_CR

- 18 -

Subquestion 2

From the answer groups below, select the correct answers to be inserted in the blanks

 in the following description.

In processing and preparing the Assignment calendar, the Assignment file is read. To allow

for easy sequential processing of the file, it should be sorted/indexed by E .

Upon commit, the files that will be updated are F .

To display the Customer view, the files that will be used are G .

Answer group for E
a) Personnel code

b) Request code

c) Visit date

Answer group for F and G

a) Assignment file, Customer file, Personnel file, Request file

b) Assignment file, Customer file, Request file

c) Assignment file, Request file

d) Customer file, Personnel file, Request file

- 19 -

Select one question from Q6 or Q7, mark s in the selection area on the answer sheet, and

answer the question.

If two questions are selected, only the first question will be graded.

Q6 Read the following description of a C program and the program itself, and then answer

the Subquestion.

[Program description]

Given program compares two files on their identity and prompts the result. Both files are text

files, and there is a “New-Line” character at the end of each line.

The program calls a function CompareFiles() with two parameters of FILE* type.

The program gets two filenames from a keyboard, and reads each line of data from two files

to the variables char line1[MaxLength] and char line2[MaxLength].

[Program]

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void CompareFiles(FILE*, FILE*);

const int MaxLength=82; //up to 80 char / line

void main() {

 char firstfileToOpen[MaxLength];

 char secondfileToOpen[MaxLength];

 FILE *FirstFile; //file variables

 FILE *SecondFile;

 printf("Enter first file to compare:");

 scanf("%s", firstfileToOpen); //read name typed by user

 printf("Enter second file to compare:");

 scanf("%s", secondfileToOpen); //read name typed by user

 FirstFile= A ; // open the file

 if (FirstFile==NULL) //was the file opened successfully?

 {

 printf("\nCould not open first file\n");

 exit (1);

 }

- 20 -

 SecondFile= B ; //open the file

 if (SecondFile==NULL) //was the file opened successfully?

 {

 printf("\nCould not open second file\n");

 exit (1);

 }

 CompareFiles(FirstFile,SecondFile);

 fclose(FirstFile); //close files

 fclose(SecondFile);

}

void CompareFiles(FILE* file1, FILE* file2) {

 char line1 [MaxLength];

 char line2 [MaxLength];

 char* ptrline1;

 char* ptrline2;

 ptrline1=fgets(line1,MaxLength,file1);

 ptrline2=fgets(line2,MaxLength,file2);

 if ()

 {

 while ()

 {

 if ()

 {

 printf("\nFound two different lines\n");

 exit (2);

 }

 if (feof(file1)==0)

 ptrline1=fgets(line1,MaxLength, file1);

 else break;

 if (feof(file2)==0)

 ptrline2=fgets(line2,MaxLength,file2);

 else break;

 }

 printf("\nFiles are identical\n");

 exit (0);

 }

 else

 {

 printf("\nAt least one file is empty \n");

 exit (0);

 }

} //end of function CompareFiles

C

D

E

- 21 -

Subquestion

From the answer groups below, select the correct answers to be inserted in the blanks
 in the above program.

Answer group for A and B

a) fopen(FirstFile,"r")
b) fopen(FirstFile,"w")
c) fopen(firstfileToOpen,"r")
d) fopen(firstfileToOpen,"w")
e) fopen(SecondFile,"r")
f) fopen(SecondFile,"w")
g) fopen(secondfileToOpen,"r")
h) fopen(secondfileToOpen,"w")

Answer group for C
a) feof(file1)!=0 && feof(file2)!=0
b) feof(file1)==0 && feof(file2)==0
c) feof(file1)!=0 || feof(file2)!=0
d) feof(file1)==0 || feof(file2)==0

Answer group for D
a) ptrline1!=NULL && ptrline2!=NULL
b) ptrline1==NULL && ptrline2==NULL
c) ptrline1!=NULL || ptrline2!=NULL
d) ptrline1==NULL || ptrline2==NULL

Answer group for E
a) line1 == line2
b) line1 && line2
c) strcmp(line1,line2)!=0
d) strcmp(line1,line2)==0

- 22 -

Q7 Read the following description of a Java program and the program itself, and then answer

the Subquestion.

[Program Description]

We wish to design a collection of cipher classes, including a Caesar cipher and a

transposition cipher.

Because the basic operations used in these two forms of encryption are the same, both

the Caesar class and the Transpose class will have methods to encrypt() and

decrypt() messages, where each message is assumed to be a string of words separated

by spaces. These methods will take a String of words and translate each word using

the encoding method appropriate for that cipher. Therefore, in addition to encrypt()

and decrypt(), each cipher class will need polymorphic encode() and decode()

methods, which take a single word and encode or decode it according to the rules of the

particular cipher.

Caesar cipher: The letters of the alphabet are shifted by three letters. The program

handles lower-case letters only. For example:

PlainText: abcdefghijklmnopqrstuvwxyz

CaesarShifted: defghijklmnopqrstuvwxyzabc

Transposition cipher: The letters in the original message are rearranged in some

methodical way. A simple rule used in the program is to reverse the order of the letters in

each word. For example, "hello" becomes "olleh".

 ***** Caesar Cipher Encryption *****
PlainText: animals are in the zoo
Encrypted: dqlpdov duh lq wkh crr
Decrypted: animals are in the zoo

 *** Transpose Cipher Encryption ***
PlainText: animals are in the zoo
Encrypted: slamina era ni eht ooz
Decrypted: animals are in the zoo

Figure: Execution Results

- 23 -

[Program]

public class TestEncrypt {

 public static void main(String argv[]) {
 Caesar caesar = new Caesar();
 String plain = "animals are in the zoo";

 String secret = caesar.encrypt(plain);
 System.out.println
 (" ***** Caesar Cipher Encryption *****");
 System.out.println("PlainText: " + plain);
 System.out.println("Encrypted: " + secret);
 System.out.println
 ("Decrypted: " + caesar.decrypt(secret));

 Transpose transpose = new Transpose();
 secret = transpose.encrypt(plain);
 System.out.println
 ("\n *** Transpose Cipher Encryption ***");

 System.out.println("PlainText: " + plain);
 System.out.println("Encrypted: " + secret);
 System.out.println
 ("Decrypted: " + transpose.decrypt(secret));
 }
}

import java.util.StringTokenizer;

A {

 public String encrypt(String s) {
 if (s == null || s.equals("")) return s;
 StringBuffer result = new StringBuffer();
 StringTokenizer words = new StringTokenizer(s);
 while (words.hasMoreTokens()) {
 result.append(encode(words.nextToken()) + " ");
 }
 return result.substring(0, result.length()-1);
 }

 public String decrypt(String s) {
 if (s == null || s.equals("")) return s;
 StringBuffer result = new StringBuffer();
 StringTokenizer words = new StringTokenizer(s);
 while (words.hasMoreTokens()) {
 result.append(decode(words.nextToken()) + " ");
 }
 return result.substring(0, result.length()-1);
 }

 public abstract String encode(String word);

 public abstract String decode(String word);
}

- 24 -

class Caesar extends Cipher {
 public String encode(String word) {
 StringBuffer result = new StringBuffer();
 B {

 char ch = word.charAt(k);
 ch = (char) ('a' + (ch - 'a' + 3) % 26);
 result.append(ch);
 }
 return result.toString();
 }

 public String decode(String word) {
 StringBuffer result = new StringBuffer();
 for (int k = 0; k < word.length(); k++) {
 char ch = word.charAt(k);
 C ;
 result.append(ch);
 }
 return result.toString();
 }
}

D {
 public String encode(String word) {
 StringBuffer result = new StringBuffer(word);
 return result.reverse().toString();
 }

 public String decode(String word) {
 return encode(word);
 }
}

- 25 -

Subquestion

From the answer groups below, select the correct answers to be inserted in the blanks
 in the above program.

Answer group for A
a) abstract class Cipher b) class Cipher

c) final class Cipher d) interface Cipher

Answer group for B
a) for (int k=0; k < word.length; k++)

b) for (int k=0; k<word.length(); k++)

c) for (int k=word.length; k>0; k--)

d) for (int k=word.length(); k>0; k--)

Answer group for C
a) ch = (char)('a' + (ch - 'a' - 3) % 26)

b) ch = (char)('a' + (ch - 'a' + 3) % 26)

c) ch = (char)('a' + (ch - 'a' - 23) % 26)

d) ch = (char)('a' + (ch - 'a' + 23) % 26)

Answer group for D
a) class Transpose

b) class Transpose extends Cipher

c) class Transpose implements Cipher

d) interface Transpose

- 26 -

Select one question from Q8 or Q9, mark s in the selection area on the answer sheet, and

answer the question.

If two questions are selected, only the first question will be graded.

Q8 Read the following description of a C program and the program itself, and then answer

the Subquestion.

[Program Description]

Piglatin is an encoded form of English that is often used by children as a game. It transforms

an English text into a “strange and foreign-sounding language”.

A piglatin word is formed from an English word by transposing the first sound (in this

program, the first letter) to the end of the word, and then adding the letter “a”. For example,

the word “dog” becomes “ogda,” “computer” becomes “omputerca”, “piglatin” becomes

“iglatinpa”, and so on.

Given C program accepts a line of English text up to 80 characters, and then print out the

corresponding text in piglatin. A text must be started at column 1 (no leading space(s)), and

words must be separated by only one space character.

An example below shows a sample input and it’s output:

Input: have a nice day

Output: aveha aa icena ayda

Briefly, the program consists of the following major steps.

(1) Initialize I/O arrays.

(2) Read in an entire line of text.

(3) Determine the number of words in the line (words are separated by space(s).

(4) Rearrange the words into piglatin form, on a word-by-word basis, as follows:

(a) Locate the end of the word.

(b) Transpose the first letter to the end of the word and then add an “a.”

(c) Locate the beginning of the next word.

(5) Display the entire line of text in piglatin form.

The program continues this procedure repetitively until the program reads a line of text whose

first three letters are “end” (or “END’).

- 27 -

[Program]

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <string.h>

void initialize(char english[], char piglatin[]);

void readinput(char english[]);

int countwords(char english[]);

void convert(int words, char english[], char piglatin[]);

void writeoutput(char piglatin[]);

void main()

{

 char english[81], piglatin[121];

 int words;

 printf("Welcome to the Piglatin Generator\n\n");

 printf("Type \'END\' to finish\n\n");

 do

 {

 /* process a new line of text */

 initialize(english, piglatin);

 readinput(english);

 if (toupper(english[0])=='E' && toupper(english[1])=='N'

 && toupper(english[2])=='D') break;

 A ;

 /* convert english into piglatin */

 if (english[0] != ' ')

 {

 convert(words, english, piglatin);

 writeoutput(piglatin);

 }

 else printf("Column 1 must not be blank, re-enter.\n");

 }

 while(words >= 0);

 printf("\naveHa aa icena ayda (Have a nice day)\n");

}

- 28 -

/* initialize the character arrays with blank spaces */

void initialize(char english[], char piglatin[])

{

 int count;

 for(count=0; count<81; count++)

 english[count]=' ';

 for(count=0; count<121; count++)

 piglatin[count]=' ';

 return;

}

/* read one line of English text */

void readinput(char english[])

{

 int count = 0;

 char c;

 while (B)

 {

 if (count < 80)

 english[count]=c;

 count++;

 }

 return;

}

/* scan the English text and determine the number of words */

int countwords(char english[])

{

 int words=1;

 int count;

 for(count=0; count<79; count++)

 if(C)

 words++;

 return(words);

}

- 29 -

/* convert each word into piglatin */

void convert(int words, char english[], char piglatin[])
{

 int n, count;

 int m1=0;

 int m2;

 for(n=1; D ; n++)

 {

 count=m1;

 while(english[count]!=' ')

 m2=count++;

 for(count=m1; count<m2; count++)

 E ;

 piglatin[m2+(n-1)]=english[m1];

 piglatin[m2+n]='a';

 F ;

 }

 piglatin[m2+n+1]='\0';

 return;
}

/* display the line of text in piglatin */

void writeoutput(char piglatin[])
{

 int lp=strlen(piglatin);

 int count;

 for(count=0; count<lp; count++)

 putchar(piglatin[count]);

 printf ("\n");

 return;
}

Subquestion

From the answer groups below, select the correct answers to be inserted in the blanks

 in the above program.

Answer group for A

a) english = piglatin

b) piglatin = english

c) words = countwords(english)

d) words = countwords(piglatin)

- 30 -

Answer group for B

a) (c=getchar())!=’\n’

b) (c=getchar())==’\n’

c) c==’\n’

d) c=getchar()

Answer group for C

a) english[count] != ' ' && english[count+1] == ' '

b) english[count] == ' ' && english[count+1] != ' '

c) english[count-1] != ' ' && english[count] == ' '

d) english[count-1] == ' ' && english[count] != ' '

Answer group for D

a) n<=80

b) n<=strlen(english)

c) n<=strlen(piglatin)

d) n<=words

Answer group for E

a) piglatin[count + (n+1)] = english[count+1]

b) piglatin[count + (n+1)] = english[count-1]

c) piglatin[count + (n-1)] = english[count+1]

d) piglatin[count + (n-1)] = english[count-1]

Answer group for F

a) m1 = m2 + 1

b) m1 = m2 + 2

c) m2 = m1 + 1

d) m2 = m1 + 2

- 31 -

Q9 Read the following description of a Java program and the program itself, and then answer

the Subquestion.

A Java program consists of the following classes that represent various types of employees

that are employed at a company.

The payday method of the Staff class scans through the list of employees, printing their

information and invoking their pay methods to determine how much each employee should

be paid. The invocation of the pay method in some of the classes described above is

polymorphic because each class has its own version of the pay method.

Classes Purpose
Firm This is the executable class which has the main() method. It creates a

Staff of employees and invokes the payday method to pay them all.
The program output includes information about each employee and how
much each is paid.

Staff The Staff class maintains an array of objects that represent individual
employees of various kinds (staffList). The array is declared to hold
StaffMember references and filled with objects created from several
other classes. These classes are all inherit from StaffMember class.
The staffList array is filled with polymorphic references.

StaffMember This abstract class represents a generic staff member. It does not represent
a particular type of employee and is not intended to be instantiated.
It serves as the ancestor of all employee classes and contains information
that applies to all employees. Each employee has a name, address and
phone number, so variables to store these values are declared in the
StaffMember class and are inherited by all subclasses.

Volunteer This class represents a staff member that works as a volunteer.
A volunteer is not compensated monetarily for his or her work.

Employee This class represents an employee that gets paid at a particular rate each
period.

Executive This class represents an executive staff member, who can earn a bonus in
addition to his or her own normal pay rate.

Hourly This class represents an employee that gets paid by the hour.

- 32 -

The following output shows the execution results of the program.

Name: Sam
Address: 123 Main Line
Phone: 555-0469
Social Security Number: 123-45-6789
Paid: 2923.07

Name: Carla
Address: 456 Off Line
Phone: 555-0101
Social Security Number: 987-65-4321
Paid: 1246.15

Name: Woody
Address: 789 Off Rocker
Phone: 555-0000
Social Security Number: 010-20-3040
Current hours: 40
Paid: 422.0

[Program]

public class Firm {

 public static void main(String[] args) {

 Staff personnel = new Staff();

 A ;

 }

}

public class Staff {

 private StaffMember[] staffList;

 public Staff() {

 staffList = new StaffMember[3];

 staffList[0] = new Executive("Sam", "123 Main Line",

 "555-0469", "123-45-6789", 2423.07);

 staffList[1] = new Employee("Carla", "456 Off Line",

 "555-0101", "987-65-4321", 1246.15);

 staffList[2] = new Hourly("Woody", "789 Off Rocker",

 "555-0000", "010-20-3040", 10.55);

 ((B)staffList[0]).awardBonus(500.00);

 ((C)staffList[2]).addHours(40);

 }

- 33 -

 public void payday() {

 double amount;

 for (int count=0; count < staffList.length; count++)

 {

 System.out.println(staffList[count]);

 amount = D ; // polymorphic

 if (amount == 0.0)

 System.out.println("Thanks!");

 else

 System.out.println("Paid: " + amount);

 System.out.println("-----------------------------------");

 }

 }

}

abstract public class StaffMember {

 protected String name;

 protected String address;

 protected String phone;

 public StaffMember(String eName,

 String eAddress, String ePhone) {

 name = eName;

 address = eAddress;

 phone = ePhone;

 }

 public String toString() {

 String result = "Name: " + name + "\n";
 result += "Address: " + address + "\n";
 result += "Phone: " + phone;

 return result;

 }

 public abstract double pay();

}

public class Volunteer extends StaffMember {

 public Volunteer(String eName, String eAddress, String ePhone) {

 super(eName, eAddress, ePhone);

 }

 public double pay() {

 return 0.0;

 }

}

- 34 -

public class Employee extends StaffMember {

 protected String socialSecurityNumber;

 protected double payRate;

 public Employee(String eName, String eAddress, String ePhone,

 String socSecNumber, double rate) {

 super(eName, eAddress, ePhone);

 socialSecurityNumber = socSecNumber;

 payRate = rate;

 }

 public String toString() {

 String result = E + "\nSocial Security Number: " +
 socialSecurityNumber;

 return result;

 }

 public double pay() {

 return payRate;

 }

}

public class Executive extends F {

 private double bonus;

 public Executive(String eName, String eAddress, String ePhone,

 String socSecNumber, double rate) {

 super(eName, eAddress, ePhone, socSecNumber, rate);

 bonus = 0;

 }

 public void awardBonus(double execBonus) {

 bonus = execBonus;

 }

 public double pay() {

 double payment = super.pay() + bonus;

 bonus = 0;

 return payment;

 }

}

- 35 -

public class Hourly extends Employee {

 private int hoursWorked;

 public Hourly(String eName, String eAddress, String ePhone,

 String socSecNumber, double rate) {

 G ;

 hoursWorked = 0;

 }

 public void addHours(int moreHours) {

 hoursWorked += moreHours;

 }

 public double pay() {

 double payment = payRate * hoursWorked;

 hoursWorked = 0;

 return payment;

 }

 public String toString() {

 String result = super.toString();

 result += "\nCurrent hours: " + hoursWorked;
 return result;

 }

}

- 36 -

Subquestion

From the answer groups below, select the correct answers to be inserted in the blanks

 in the above program.

Answer group for A
 a) payday()

 b) personnel

 c) personnel.payday()

 d) personnel.Staff()

 e) personnel=null

 f) Staff()

Answer group for B, C and F
 a) abstract

 b) Employee

 c) Executive

 d) Hourly

 e) Object

 f) Staff

 g) StaffMember

 h) super

 i) Volunteer

Answer group for D and E
 a) payrate+bonus

 b) payrate+super.bonus

 c) staffList[count].name + staffList[count].bonus

 d) staffList[count].pay()

 e) staffList[count].pay(null)

 f) staffList[count].toString()

 g) super.toString()

Answer group for G
 a) Employee (eName, eAddress, ePhone, socSecNumber, rate)

 b) Executive (eName, eAddress, ePhone, socSecNumber, rate)

 c) super()

 d) super(eName, eAddress, ePhone, socSecNumber, rate)

 e) super(null)

 f) Volunteer(eName, eAddress, ePhone) + super(socSecNumber, rate)

