
Company names and product names appearing in the test questions are trademarks or registered
trademarks of their respective companies. Note that the ® and ™ symbols are not used within the text.

Q2 2020

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 – Q6 Q7 , Q8

Question Selection Compulsory Select 1 of 2

Examination Time 13:30 - 16:00 (150 minutes)

Instructions:

1. Use a pencil. If you need to change an answer, erase your previous answer completely
and neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or write
on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection
For Q7 and Q8, mark the of the question you select to answer in the “Selection
Column” on your answer sheet.

(4) Answers
Mark your answers as shown in the following sample question.

[Sample Question]
In which month was the spring Fundamental IT Engineer Examination conducted in
2019?

Answer group

a) March b) April c) May d) June

Since the correct answer is “ b) April ”, mark your answer sheet as follows:

[Sample Answer]

Sample

Do not open the exam booklet until instructed to do so.

Inquiries about the exam questions will not be answered.

- 2 -

Notations used in the pseudo-language

In questions that use pseudo-language, the following notations are used unless otherwise
stated:

[Declaration, comment, and process]

Notation Description

type: var1, , array1[], Declares variables var1, , and/or arrays
array1[], , by data type such as INT and CHAR.

FUNCTION: function(type: arg1,) Declares a function and its arguments arg1, .

/* comment */ Describes a comment.

P
ro

ce
ss

variable expression ; Assigns the value of the expression to the variable.

function (arg1,) ; Calls the function by passing / receiving the
arguments arg1, .

IF (condition) {
 process1
}

ELSE {
 process2
}

Indicates the selection process.
If the condition is true, then process1 is executed.
If the condition is false, then process2 is
executed, when the optional ELSE clause is present.

WHILE (condition) {
 process
}

Indicates the “WHILE” iteration process.
While the condition is true, the process is
executed repeatedly.

DO {
 process
} WHILE (condition);

Indicates the “DO - WHILE” iteration process.
The process is executed once, and then while the
condition is true, the process is executed
repeatedly.

FOR (init ; condition ; incr) {
 process
}

Indicates the “FOR” iteration process.
While the condition is true, the process is
executed repeatedly.
At the start of the first iteration, the process init is
executed before testing the condition.
At the end of each iteration, the process incr is
executed before testing the condition.

[Logical constants]

true, false

[Operators and their precedence]

Type of operation Unary Arithmetic Relational Logical

Operators +, −, not ×, , % +, − >, <, ≥, ≤, =, and or

Precedence High Low

Note: With division of integers, an integer quotient is returned as a result.
 The “%” operator indicates a remainder operation.

- 3 -

The Internet

Partner’s network

The Internet

R2

R3 S3

PC‐1

Legend
 : Network boundary
 : Zone boundary
R1： Router (Zone-based
 Policy Firewall)
R2, R3： Routers
S1, S2, S3： Switches

Org-1’s network

Internet zone

R1

IF0

IF1
IF2

S1

PC‐2

Internal zone

Meeting zone

S2PC‐3

 Questions Q1 through Q6 are all compulsory. Answer every question.

Q1. Read the following description of zone-based policy firewall (ZPF), and then answer

Subquestions 1 through 3.

Over time, networks continued to grow, and they were increasingly used to transfer and store

sensitive information. The information and services available are essential to the

organization.

A widely accepted host-based security service is the firewall. The most basic type of a

firewall uses access control lists (ACLs) to filter IP traffic and monitor established traffic

patterns. Later, firewall implementation uses a zone-based approach that operates as a

function of interfaces instead of access control lists. In a ZPF, interfaces are assigned to

zones, and inspection policy is applied to traffic moving between the zones. A ZPF can take

three possible actions that inspect, drop, and pass. It can be configured for extremely

advanced, protocol-specific, granular control. It prohibits traffic via a default deny-all policy

between different firewall zones. ZPF is suited for multiple interfaces that have similar or

varying security requirements.

Subquestion 1

From the answer group below, select the correct answer to be inserted in each blank

 in the following description. Here, the answers to be inserted in A1 through A4

should be selected as the correct combination from the answer group for A.

Figure 1 Org-1’s network topology

- 4 -

Org-1 is a medium-size organization that is cooperating with a partner organization. Figure

1 shows network devices such as routers, switches and PC hosts in Org-1 and the partner

organization. All network devices in Org-1 and the partner organization can communicate

with each other, however, they do not provide security. Network configurations enable only

end-to-end connectivity.

Therefore, the network security officer for Org-1 decided to implement ZPF to enhance the

organization’s information security. A ZPF was created on R1, and it is currently responsible

for routing packets for the three networks connected to it. R1’s interface roles are configured

as follows:

• IF0 is connected to the Internet. Because this is a public network, it is considered to be

A1 network and should have A2 security level.

• IF1 is connected to the internal network. Only authorized users have access to this network.

The internal network is considered to be A3 network and should have

A4 security level.

• IF2 is connected to the meeting network. The meeting network is used only to host

meetings with people who are not part of the organization. The meeting network is

considered to be untrusted network and should have medium security level.

Answer group for A

Subquestion 2

From the answer groups below, select the appropriate answer to be inserted in each blank

 in the following description. Here, the answers to be inserted in B1 through B3

should be selected as the correct combination from the answer group for B.

The security policy to be enforced by R1 when it is acting as a firewall dictates that:

• No traffic initiated from the B1 should be allowed into the B2 or

B3 .

• Returning B1 traffic (return packets coming from the B1 into the R1

site, in response to requests originating from any of the R1 networks) should be allowed.

 A1 A2 A3 A4

a) a trusted the highest a trusted the lowest

b) an untrusted the highest an untrusted the lowest

c) a trusted the lowest a trusted the highest

d) an untrusted the lowest a trusted the highest

e) a trusted the highest an untrusted the lowest

f) an untrusted the lowest an untrusted the highest

- 5 -

• Hosts in the B2 are allowed to initiate any type of traffic (TCP, UDP or ICMP

based traffic).

• Hosts in the B3 are allowed to initiate only web traffic (HTTP or HTTPS) to the

B1 .

• No traffic is allowed between the B2 and the B3 . There is no guarantee

regarding the condition of guest computers in the B3 . Such machines could be

infected with malware and malicious traffic.

Answer group for B

Subquestion 3

After ZPF configuration, we need to verify that ZPF functionality is correct. During ZPF

verification, we need to know about the self zone. The self zone is the router itself and

includes all the IP addresses assigned to the router interfaces. The rules for a ZPF are

different for the self zone. If the router is a source or a destination, then all traffic is permitted

except when there is a zone-pair with a specific service-policy between the source and

destination. In this case, there is no specific service-policy.

From the answer group below, select two correct statements.

Answer group

a) When PC-1 pings PC-2, ICMP packets generated by PC-1’s ping are successful.

b) When PC-1 pings PC-3, ICMP packets generated by PC-1’s ping are dropped.

c) When PC-1 pings R1’s IF1 interface, ICMP packets generated by PC-1’s ping are

dropped.

d) When PC-2 pings PC-1, ICMP packets generated by PC-2’s ping are dropped.

e) When PC-3 pings PC-1, ICMP packets generated by PC-3’s ping are dropped.

f) When PC-3 pings R1’s IF1 interface, ICMP packets generated by PC-3’s ping are

dropped.

 B1 B2 B3

a) internal network Internet meeting network

b) internal network meeting network Internet

c) Internet internal network meeting network

d) Internet meeting network internal network

e) meeting network internal network Internet

f) meeting network Internet internal network

- 6 -

Q2. Read the following description of resource access controls, and then answer Subquestions

1 and 2.

In a multiprogramming system, there exists a situation where a process halts due to the

resource it requests being allocated to other processes and never released by them. This

situation is called a deadlock.

The graph called a resource allocation graph is often used to describe the state of the

processes and the resources in a system. A resource allocation graph consists of a set of

vertices V and a set of edges E. V contains two different subsets of vertices: P = {P1, P2,

… , Pn}, consisting of all the running processes in the system, and R = {R1, R2, … , Rm),

consisting of all resource types in the system. A directed edge from process Pi to resource

type Rj is called a request edge. It describes that process Pi has requested resource type Rj

and is currently waiting for that resource. A directed edge from resource type Rj to process

Pi is called an assignment edge. It describes that resource type Rj has been allocated to

process Pi. A system is in a deadlock state if there is a circular path in the graph.

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

 in the following description.

Figure 1 shows an example of a resource allocation graph. A circle indicates a process and

a square indicates a resource type.

Figure 1 Example of a resource allocation graph

R1

P1

R2

R3

R4

P2 P3

- 7 -

In Figure 1, process P2 is holding A and process P3 is waiting for B . The

path consisting of the vertices C makes a circular path, so the system described in

Figure 1 is in a deadlock state.

Answer group for A and B

a) R1 and R2 b) R1, R2 and R4

c) R3 d) R4

Answer group for C

a) P1, R1, P2 and R2 b) P1, R1, P2 and R3

c) P1, R2, P2 and R4 d) P2, R3, P3 and R4

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank

 in the following description.

Practically, one resource type can have a set of “instances”. For example, personal computers

and mobile phones currently ship with a CPU that has two or more processing units and the

processes that one unit can execute can also be executed by the others. The resource

allocation graph describing such a system has a vertex corresponding to a resource type that

has multiple edges directed to multiple processes.

Figure 2 shows an example of a resource allocation graph with multiple-instances resource

types.

Figure 2 Example of a multiple-instances resource allocation graph

R1

P1

R2

R3

R4

P2 P3

P5

P4

- 8 -

In Figure 2, a vertex corresponding to a resource type is depicted as a square with dots

indicating the number of instances. The assignment edge of such a resource type is directed

from one of the dots to a process vertex.

The graph has a circular path consisting of C , however, the system is not

necessarily falling into a deadlock state. It is immediately determinable that the system can

avoid a deadlock state if process D releases the resource instances it currently holds.

The system can still fall into a deadlock state, for example, if E . Therefore, the

circular dependency is not a sufficient condition for deadlocks in a system with a multiple-

instance resource allocation graph.

Answer group for D

a) P1 b) P2 c) P3

d) P4 e) P5

Answer group for E

a) a new process P6 is created and starts waiting for resource type R2

b) process P1 cancels all its requests simultaneously

c) process P4 stops holding resource type R1

d) process P5 starts waiting for resource type R3 without releasing the held resources

- 10 -

The following SQL statement “SQL1” outputs the customer ID, name, and exam count of

the customers who took the examination three times or more between January 1, 2020 and

March 31, 2020.

-- SQL1 --

SELECT Customer.CustomerID, Customer.Name, COUNT(*) AS ExamCount

 FROM Customer, Examination

 WHERE Customer.CustomerID = Examination.CustomerID

 A

Answer group for A

a) AND (ExamDate >= '2020-01-01' OR ExamDate <= '2020-03-31')

GROUP BY Customer.CustomerID, Customer.Name

HAVING COUNT(*) >= 3

b) AND ExamDate >= '2020-01-01' AND ExamDate <= '2020-03-31'

AND COUNT(*) >= 3

c) AND ExamDate BETWEEN '2020-01-01' AND '2020-03-31'

GROUP BY Customer.CustomerID, Customer.Name

HAVING COUNT(*) >= 3

d) GROUP BY Customer.CustomerID, Customer.Name, ExamDate

HAVING ExamDate >= '2020-01-01' AND ExamDate <= '2020-03-31'

 AND COUNT(*) >= 3

Subquestion 2

From the answer group below, select the correct answer to be inserted in each blank

 in the following SQL statement.

The clinic wants to identify the exam status of a customer. The exam status will be either

“Ended” or “Follow-up”, depending on whether the result of the latest examination was OK

or NG. The following SQL statement “SQL2” outputs the exam status of the customer

whose ID is 20030495.

-- SQL2 --

SELECT Examination.CustomerID,

 CASE WHEN B END AS ExamStatus

 FROM Examination

 WHERE Examination.CustomerID = '20030495'

 AND Examination.ExamDate = (SELECT C

 FROM Examination WHERE Examination.CustomerID = '20030495')

- 11 -

Answer group for B

a) Examination.Result = 'NG' THEN 'Ended' ELSE 'Follow-up'

b) Examination.Result = 'NG' THEN 'Follow-up'

WHEN Examination.Result != 'NG' THEN 'Ended'

c) Examination.Result != 'NG' THEN 'Ended' OTHERWISE 'Follow-up'

d) Examination.Result != 'NG' THEN 'Follow-up'

WHEN Examination.Result = 'NG' THEN 'Ended'

Answer group for C

a) DISTINCT Examination.ExamDate b) Examination.ExamDate

c) MAX(Examination.ExamDate) d) MIN(Examination.ExamDate)

Subquestion 3

From the answer group below, select the correct answer to be inserted in the blank

in the following description.

The clinic is developing the following SQL statement “SQL3” that will output the number

of customers who are babies under 90 days old at the present time and took the

examination(s).

Here, the function DATEDIFF(day, date1, date2) returns the difference, in days, between

date1 and date2, and the function GETDATE() returns the current date.

Line No.

1 -- SQL3 --
2 SELECT COUNT(Customer.CustomerID)
3 FROM Customer
4 JOIN Examination ON Customer.CustomerID = Examination.CustomerID
5 WHERE DATEDIFF(day, GETDATE(), Customer.Birthday) < 90

When SQL3 is executed, an incorrect number of customers is displayed. It is found that a

customer is counted multiple times if the customer took examinations multiple times. This

problem can be resolved by D . Here, the LIMIT clause limits the number of

rows to return.

Answer group for D

a) adding LIMIT 1 after line 5

b) changing COUNT(Customer.CustomerID) to COUNT(*) on line2

c) changing COUNT(Customer.CustomerID) to COUNT(*) on line2

and adding LIMIT 1 after line 5

d) changing COUNT(Customer.CustomerID)

to COUNT(DISTINCT Customer.CustomerID) on line 2

- 12 -

Company A

The Internet

203.0.113.0/26

IF0: 203.0.113.249

L2 Switch

DNS
Server

WWW
Server

File
Server

203.0.113.4

Main Office

203.0.113.5 203.0.113.6

PC PC…

Router1

Training Room

L2 Switch

PC PC…

IF1: 203.0.113.62

Q4. Read the following description of the network configuration of company A, and then

answer Subquestions 1 through 3.

Company A is a training solutions provider currently setting up a computer network in its

new location. Recently, company A allocated a group of public IP addresses with the network

address 203.0.113.0/26. Initially, company A used the same network address space for both

its main office and the training room since only a few PCs were required at the beginning of

its operation. The initial network configuration of company A is shown in Figure 1.

Note: Some information is intentionally omitted.

Figure 1 Initial network configuration of Company A

The IP address 203.0.113.249 is assigned to the WAN interface, IF0, of the router by the ISP

and 203.0.113.62 is assigned to the LAN interface, IF1, of the router. With all the occupied

IP addresses including the three servers with specific IP addresses, as shown in Figure 1,

there are A available public IP addresses that can be assigned to the PCs in

company A.

Afterward, the management of company A decided to offer more training courses, which in

turn needed to have more PCs than the available public IP addresses. The management also

decided to separate all the publicly accessible servers into a DMZ segment. The revised

network configuration of company A is shown in Figure 2.

- 13 -

Company A

The Internet

203.0.113.0/27

IF0：203.0.113.249

IF1

L2 Switch

DNS
Server

WWW
Server

File
Server

203.0.113.4

DMZ

203.0.113.5 203.0.113.6

PC PC…

Router1

Training Room

L2 Switch

PC PC…

Main Office

L2 SwitchRouter2

Router3

L2 Switch

Proxy
Server

203.0.113.7

192.168.1.0/24

IF2

IF2
IF0

IF1

IF0

IF1192.168.2.0/24

Lab1

L2 Switch

PC PC…

Lab2

Note: Some information is intentionally omitted.

Figure 2 Revised network configuration of Company A

In the revised configuration, the subnet 203.0.113.0/27 is assigned to the DMZ. Here, assume

that all the firewall rules on the routers are set appropriately to allow incoming connections

to the DMZ only, not to other segments. The rest of the public address space is reserved for

future use. Here, the last usable IP address of the DMZ is assigned to IF1 of Router1. Since

the IP address assigned to IF1 of Router1 is now 203.0.113. B , it is necessary to

update the gateway address on all servers in the DMZ to reflect this change as well.

Since the PCs in both the main office and training rooms are not required to be directly

accessible from the Internet, the private address spaces 192.168.1.0/24 and 192.168.2.0/24

are assigned to them respectively. The proxy server is deployed in the DMZ segment so that

PCs can access the Internet. Table 1 shows the final stage of network configurations on some

of the servers in the DMZ and a PC in the main office.

- 14 -

Table 1 Network configurations on some of the servers in the DMZ and a PC in the main office

 WWW Server File Server Proxy Server PC in the
Main Office

IP Address 203.0.113.5 203.0.113.6 203.0.113.7 192.168.1.8

Subnet Mask 255.255.255. C 255.255.255. C 255.255.255. C 255.255.255.0

DNS Server 203.0.113.4 203.0.113.4 203.0.113.4 203.0.113.4

Gateway 203.0.113. B 203.0.113. B 203.0.113. B 192.168.1.1

Subquestion 1

From the answer group below, select the correct answer to be inserted in each blank

 in the above description and Table 1.

Answer group for A through C

a) 14 b) 30 c) 31

d) 46 e) 58 f) 62

g) 192 h) 224 i) 249

Subquestion 2

From the answer group below, select the correct answer to be inserted in each blank

 in Table 3.

Each entry of routing tables has two information fields:

(1) Destination: the network address of the destination. Note that 0.0.0.0/0 for the

destination means that the next hop is the default gateway.

(2) Next hop: there are two types of next hop: “Connected” or an IP address.

“Connected” indicates that the destination network is directly connected to the router.

On the other hand, an IP address indicates that another router on the directly connected

network has the IP address and the router is one hop closer to the destination network.

Table 2 shows some of the IP addresses assigned to the interfaces on the routers. Table 3

shows some of the entries of the routing table on each router.

- 15 -

Table 2 IP addresses assigned to the interfaces on the routers

Router Interface IP address
Router1 IF0 203.0.113.249
Router1 IF2 192.168.0.5
Router2 IF0 192.168.0.6
Router2 IF1 192.168.0.9
Router2 IF2 192.168.1.1
Router3 IF0 192.168.0.10
Router3 IF1 192.168.2.1

Table 3 Some of the entries of the routing table on each router

Router Destination Next Hop

Router1 192.168.0.0/29 Connected

Router1 192.168.0.8/29 D

Router1 192.168.1.0/24 D

Router1 192.168.2.0/24 D

Router1 203.113.0.0/27 Connected

Router2 0.0.0.0/0 192.168.0.5

Router2 192.168.0.0/29 Connected

Router2 192.168.0.8/29 Connected

Router2 192.168.1.0/24 Connected

Router2 192.168.2.0/24 192.168.0.10

Router3 0.0.0.0/0 E

Router3 192.168.0.8/29 Connected

Router3 192.168.2.0/24 Connected

Note: Some information is intentionally omitted.

Answer group for D and E

a) 192.168.0.5 b) 192.168.0.6 c) 192.168.0.9

d) 192.168.0.10 e) 192.168.1.1 f) 192.168.1.2

g) 203.0.113.249 h) Connected

- 16 -

Subquestion 3

From the answer group below, select the correct answer to be inserted in the blank

in the following description.

The management also decided to move the file server from the DMZ to the main office

segment to prevent access from outside because the file server keeps documents that are only

for internal use. The IP address 192.168.1.6 is assigned to the file server. Table 4 shows the

network configuration on the file server after the relocation.

Table 4 Network configuration on the file server

 File Server
IP Address 192.168.1.6
Subnet Mask 255.255.255.0
DNS Server 203.0.113.4
Gateway 192.168.1.254

All PCs in the main office can now access the file server. However, the file server is unable

to access the proxy server and the PCs from the training rooms are unable to access the file

server. The administrator confirmed that the firewall rules on the router and the DNS record

for the file server on the DNS server were updated properly. Later on, the administrator

changed F to resolve the problem, so everything performs correctly as a result.

Answer group for F

a) the DNS server of the file server to 192.168.1.1

b) the gateway address of the file server to 192.168.1.1

c) the gateway address of the file server to the same value as the WWW server

d) the IP address of the file server to 192.168.2.6

e) the IP address of the file server to 203.0.113.36

f) the subnet mask of the file server to the same value as the WWW server

- 17 -

Q5. Read the following description of an online student system, and then answer Subquestions

1 and 2.

University R plans to develop an online student system for the registrar office, which serves

the students’ needs on registration and withdrawal.

[Main Functional Description]

(1) Login

• A student has to login to the system with student ID and password.

(2) Register Course

• The student can register courses by selecting courses using course ID.

• The student can register multiple courses at the same time. The total number of credits

must not be greater than the maximum credits, 24 per semester.

• The system generates the course list that the student is able to select. The course list

shows:

• The prerequisite courses that are not cancellable

• Non-prerequisite courses that have available seats

• JavaScript is used for processing the course list. When the student selects or cancels

any courses, it checks the time schedule and the total number of registered credits for

this particular semester.

• The system checks whether the added courses satisfy the following conditions:

• Prerequisite courses

• Time schedule

• Number of available seats

• Total number of registered credits for this particular semester.

If there are any errors, the system displays messages indicating the courses that were

not allowed to be added or needed to be re-selected.

• The student submits the selected course information to the system.

• The system checks the course information. If there are errors, it generates error

messages. If there is no error, it updates the database.

• The system shows a confirmation message of the course registration, and sends the

course information to the student by email.

• The system allows the student to use this registration function only during the first two

weeks of each semester.

- 18 -

Student System

Show course list

Select or
cancel

No

Yes

Check

Error

Yes

No

Generate
error message

Button

OK

Submit

Generate
course list

Check

Close

ErrorYes

No

Update

Send email

Show confirmation
message

(3) Withdraw Course

• During the third week of each semester, the student is allowed to withdraw any courses

from the registered courses. To do so, the student has to select the course(s) that he/she

wants to withdraw.

• The withdrawals have to be approved by the lecturer.

[Activity Diagram]

Figure 1 Activity diagram of “Register Course”

Table 1 Use case description of “Register Course”

Diagram name Register Course

Input student ID, course ID
Output The course information

Trigger The student selects the “Register Course” menu button on the screen.

Availability First two weeks of semester
Pre-condition Successful login

Post-condition Registration and notification of the course information.

Basic flow Refer to Table 2

- 19 -

Table 2 Description of basic flow of “Register Course”

Student System

 1. Generate the course list by student ID.
Select A courses, and the
other courses that satisfy B .

2. Display the course list.

3. Select a course or cancel course
selection. Each time a course is
selected or canceled, C
and D are checked.
Then, the system checks various
conditions.

4. Touch the “OK” button to
submit student ID and selected
course IDs, or touch the “Close”
button to discard the course
selection.

 5. Check the course information. If there
is no error, E .

6. When the courses are registered
successfully, then show the
success message and logout.
Otherwise, check the error
messages and proceed to 2.

 7. After all the registered courses are
approved, show the message and send
the course information.

- 20 -

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

 in Table 2.

Answer group for A through D

a) non-prerequisite

b) number of maximum credits

c) prerequisite

d) seat availability

e) time schedule

f) total number of registered credits

g) week of the semester

Answer group for E

a) display the course list

b) send the course information

c) show the confirmation message

d) update the database

Subquestion 2

From the answer group below, select the information to be received from the system when

checking the input items in the course list.

Answer group

a) number of available seats

b) start date of the semester

c) time schedule

- 21 -

Q6. Read the following description of a program and the program itself, and then answer

Subquestions 1 and 2.

In a multiprogramming environment, when resources requested by a process cannot be

satisfied, the process is put in the waiting state. A deadlock occurs when resources requested

by a process are held by other processes that are in the waiting state.

The program Banker checks the given status of processes and resources, and displays the

execution sequence of the processes if they are not in a deadlock state.

[Program description]

(1) The program Banker uses the following arrays. Indexes of all arrays start at 0.

(i) maxP[][] and allocP[][]:

The resource allocation status of each process is given by these arrays.

maxP[p][r] = n indicates that process Pp requires n instances of resource Rr to finish

the process. allocP[p][r] = n indicates that currently n instances of resource Rr are

allocated to process Pp.

Figure 1a shows an example of process status. There are 3 processes (P0, P1, and

P2) and 3 types of resources (R0, R1, and R2). For example, maxP shows that process

P0 requires four R0, one R1, and one R2 resources to finish the process, and allocP

shows that two R0, one R1, and no R2 resources are currently allocated to process

P0. Therefore, P0 is waiting for two more R0 and one more R2 resources.

 maxP[][]: R0 R1 R2 allocP[][]: R0 R1 R2 R0 R1 R2

 P0 4 1 1 P0 2 1 0 maxR[]: 5 4 3

 P1 1 3 1 P1 1 1 1 allocR[]: 3 3 3

 P2 1 1 2 P2 0 1 2 availR[]: 2 1 0

Figure 1a Process status Figure 1b Resource status

(ii) maxR[], allocR[] and availR[]:

The current allocation status of each resource is given by these three arrays.

maxR[r] = n indicates that there are maximum n instances of resource Rr.

allocR[r] = n indicates that n instances of resource Rr are allocated to processes.

availR[r] = n indicates that n instances of resource Rr are currently available.

Figure 1b, that is connected with Figure 1a, shows an example of resource status. As

for resource R0, among a maximum of five R0 resources, three of them are allocated

to the processes (that is, as in Figure 1a, two for P0 and one for P1), therefore, two

(= 5 - 3) R0 resources are currently available for allocation.

- 22 -

(iii) stateP[]:

stateP[p] = 1 indicates that process Pp is waiting for execution.

stateP[p] = 0 indicates that process Pp is executed and finished.

Initially, all elements of stateP are set to 1.

(2) Let pn be the number of processes, and rn be the number of resources. The values in

arrays maxP, allocP, and maxR are set in advance. First, set the values in arrays allocR

and availR from the values in arrays maxP, allocP, and maxR.

(3) Then, repeat this step while the number of value 1s in stateP > 0. If the number of

value 1s in stateP reaches 0, go to (4).

(i) Check arrays maxP and allocP from top to bottom (excluding the finished processes

that have value 0 in stateP) to find the next process that is executable. Process p is

determined as executable if the following allocation condition is met:

A - B ≤ availR[r] (r: 0, 1, … , rn-1)

If the next executable process exists, proceed to (ii), otherwise, go to (4).

(ii) For process p that is determined as executable, perform the following settings:

Free the resources held by process p and update the contents of availR as follows:

availR[r] availR[r] + C (r: 0, 1, … , rn-1)

Set StateP[p] to 0.

Display the message “Process Pp is executed and finished.”.

(4) Terminate the program. In case if processes that are waiting for execution still remain,

display “The processes are in deadlock state.” before termination.

[Program]

PROGRAM: Banker() {

 INT: p, pn 3 /* pn: number of processes */

 INT: r, rn 3 /* rn: number of resources */
 INT: maxP[pn][rn] {{4, 1, 1}, {1, 3, 1}, {1, 1, 2}}

 INT: allocP[pn][rn] {{2, 1, 0}, {1, 1, 1}, {0, 1, 2}}

 INT: stateP[pn] {1, 1, 1} /* set “waiting for execution” state */
 INT: maxR[rn] {5, 4, 3} /* max number of each resource */
 INT: allocR[rn] {0, 0, 0}

 INT: availR[rn]

 INT: number_of_value_1s_in_stateP

 BOOLEAN: deadlock_occurs, executable_process_is_found

	

- 23 -

 FOR (p 0; p < pn; p p + 1) { /* set allocatable resources */
 FOR (r 0; r < rn; r r + 1) {

 allocR[r] allocR[r] + allocP[p][r];

 }

 }

 FOR (r 0; r < rn; r r + 1) { /* set available resources */
 availR[r] maxR[r] - allocR[r];

 }

 number_of_value_1s_in_stateP pn;

 print(maxP[][], allocP[][]); /* print the contents of arrays in edited form */

 print(maxR[], allocR[], availR[], stateP[]);

 WHILE (number_of_value_1s_in_stateP > 0) {

 deadlock_occurs true;

 FOR (p 0; p < pn; p p + 1) {

 IF (stateP[p] = 1) {

 executable_process_is_found true;

 FOR (r 0; r < rn; r r + 1) {

 IF (A - B > availR[r]) {

 executable_process_is_found false;

 break; /* exit the inner FOR loop */
 }

 }

 IF (executable_process_is_found) {

 deadlock_occurs false;

 FOR (r 0; r < rn; r r + 1) {

 availR[r] availR[r] + C ;

 }

 D ;

 number_of_value_1s_in_stateP
 number_of_value_1s_in_stateP - 1;

 print("Process P”, p, “ is executed and finished.");

 break; /* exit the FOR loop */

 }

 }

 }

 IF (deadlock_occurs) {

 print("The processes are in deadlock state.");

 break; /* exit the WHILE loop */
 }

 print(availR[], stateP[]); /* print the contents of arrays */

 }

}

- 24 -

Figure 2 shows the program output for the case shown in Figures 1a and 1b.

 maxP: R0 R1 R2 allocP: R0 R1 R2

 P0 4 1 1 P0 2 1 0

 P1 1 3 1 P1 1 1 1

 P2 1 1 2 P2 0 1 2

 R0 R1 R2

 maxR: 5 4 3

allocR: 3 3 3 P0 P1 P2

availR: 2 1 0 stateP: 1 1 1

Process P2 is executed and finished.

 R0 R1 R2 P0 P1 P2

availR: 2 2 2 stateP: 1 1 0

Process E is executed and finished.

 R0 R1 R2 P0 P1 P2

availR: F stateP: Note: Shaded parts
 are not shown
Process is executed and finished.

 R0 R1 R2 P0 P1 P2

availR: 5 4 3 stateP: 0 0 0

Figure 2 Program output for the data shown in Figures 1a and 1b

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank

 in Figure 2 and the program. If necessary, select the same answer twice or more.

Answer group for A, B and C

a) allocP[p][r] b) allocR[r]

c) maxP[p][r] d) maxR[r]

Answer group for D

a) executable_process_is_found false

b) stateP[p] 0

c) stateP[p] 1

- 25 -

Answer group for E

a) P0 b) P1 c) P2

Answer group for F

a) 2 3 2 b) 2 4 3 c) 3 3 3

d) 3 4 2 e) 4 3 2 f) 4 4 3

Subquestion 2

From the answer groups below, select the correct answer to be inserted in the blank

 in the following description.

When the program Banker is executed by setting the values shown in Figures 3a and 3b to
arrays maxP, allocP, and maxR, the execution result reveals that G .

 maxP[][]: R0 R1 R2 allocP[][]: R0 R1 R2 R0 R1 R2

 P0 4 1 1 P0 2 1 0 maxR[]: 4 3 2

 P1 1 3 1 P1 1 1 0 allocR[]: 4 2 1

 P2 1 1 2 P2 1 0 1 availR[]: 0 1 1

Figure 3a Process status Figure 3b Resource status

Answer group for G

a) P0, P1, and P2 are executed and finished

b) P0, P1, and P2 are in a deadlock state

c) P0 is executed and finished; however, P1 and P2 are in a deadlock state

d) P1 is executed and finished; however, P0 and P2 are in a deadlock state

e) P2 is executed and finished; however, P0 and P1 are in a deadlock state

- 27 -

After setting the initial values in visited[] and dist[], the program repeats the following

steps (1) and (2) N times. Figure 3 shows how the steps proceed.

(1) Among the nodes that have value 0 in visited[], select a node whose value in dist[]

is the shortest. Let the selected node number be i, and set 1 to visited[i].

(2) For node i selected in (1), check every node j that is directly connected to node i, and if

the sum of the distances from node 0 to node i and from node i to node j is less than the

current distance from node 0 to node j, then replace the current distance from node 0 to

node j with the shorter distance via node i.

 Checkpoint visited[] dist[]
 0 1 2 3 4 5 0 1 2 3 4 5

Initial settings 0 0 0 0 0 0 0 INF INF INF INF INF

After 1st loop 1 0 0 0 0 0 0 2 1 5 INF INF

After 2nd loop 1 0 1 0 0 0 0 2 1 4 2 INF

After 3rd loop 1 1 1 0 0 0 0 2 1 4 2 INF

After 4th loop 1 1 1 A1 0 0 2 1 3 2 A2

After 5th loop 1 1 1 1 1 0 0 2 1 3 2 4

After 6th loop 1 1 1 1 1 1 0 2 1 3 2 4

Figure 3 Steps to obtain the shortest distances from the starting point

Finally, the shortest distances from node 0 to other nodes are obtained in dist[], and the

program displays the following message. Here, node 5 is the GOAL node.

The shortest distance from START to GOAL is 4.

The program has the following functions:

(1) void dijkstra(int len[][N], int start, int dist[]);

Solves the shortest path problem using Dijkstra’s algorithm. It calls the functions

choose and update. The node number of the starting point is given by start.

(2) int choose(int visited[], int dist[]);

Selects one node which has the shortest distance among the nodes that have not yet been

visited, updates the contents of the array visited[], and returns the selected node

number.

(3) void update(int i, int visited[], int len[][n], int dist[]);

Updates the distance to the nodes directly connected to the selected node number given

by i.

- 28 -

[Program]

#include <stdio.h>

#include <limits.h>

#define N 6

#define INF INT_MAX

void dijkstra(int len[][N], int start, int dist[]);

int choose(int visited[], int dist[]);

void update(int i, int visited[], int len[][N], int dist[]);

int main() {

 int dist[N];

 /* corresponds to the network in Figure 1 */

 int len[N][N] = {{ 0, 2, 1, 5, INF, INF },

 { 2, 0, 2, 3, INF, INF },

 { 1, 2, 0, 3, 1, INF },

 { 5, 3, 3, 0, 1, 5 },

 { INF, INF, 1, 1, 0, 2 },

 { INF, INF, INF, 5, 2, 0 }};

 dijkstra(len, 0, dist);

 printf("The shortest distance from START to GOAL is %d.", dist[5]);

 return 0;

}

void dijkstra(int len[][N], int start, int dist[]) {

 int i, visited[N], nvisited;

 /* initialization */

 for (i = 0; i < N; i++) {

 visited[i] = B ;

 dist[i] = INF;

 }

 /* start has 0 distance from itself */

 dist[start] = 0;

 /* visit each node */

 for (C) {

 i = choose(visited, dist);

 update(i, visited, len, dist);

 }

}

	

- 29 -

int choose(int visited[], int dist[]) {

 int i, j, min_dist = INF;

 for (j = 0; j < N; j++) {

 if (visited[j] == 0 && dist[j] < min_dist) {

 min_dist = dist[j];

 D ;

 }

 }

 visited[i] = 1;

 return i;

}

void update(int i, int visited[], int len[][N], int dist[]) {

 int j, new_dist_j;

 for (j = 0; j < N; j++) {

 if (E) {

 new_dist_j = F ;

 if (visited[j] == 0 && new_dist_j < dist[j]) {

 dist[j] = new_dist_j;

 }

 }

 }

}

Subquestion

From the answer groups below, select the correct answer to be inserted in each blank

 in Figure 3 and the program. Here, the answers to be inserted in A1 and A2

should be selected as the appropriate combination from the answer group for A.

Answer group for A

 A1 A2

a)

0 1

4

b)

0 1

INF

c)

1 0

4

d)

1 0

INF

- 30 -

Answer group for B

a) -1 b) 0

c) 1 d) INF

Answer group for C

a) i = 0; i < N; i++

b) i = start; i < N; i++

c) nvisited = 0; nvisited < N; nvisited++

d) nvisited = start; nvisited < N; nvisited++

Answer group for D

a) break b) dist[j] = dist[i]

c) dist[j]++ d) i = j

e) return i f) return j

Answer group for E

a) i != j b) i == j

c) len[i][j] != INF d) len[i][j] == 0

e) len[i][j] == INF f) len[i][j] == len[j][i]

Answer group for F

a) dist[i] + len[i][j] b) dist[i] - len[i][j]

c) dist[j] + len[i][j] d) dist[j] – len[i][j]

- 31 -

Q8. Read the following description of Java programs and the programs themselves, and then

answer Subquestions 1 and 2.

[Program Description]

This program, consisting of two classes, iteratively generates all solutions of the 4-Queen

Puzzle, which is the challenge of placing 4 queens on a 4×4 chessboard so that any of the

queens cannot attack the other queens. A queen can move in a straight line, horizontally,

vertically, or diagonally. Therefore, multiple queens cannot be placed on the same row, the

same column, or diagonal positions on a chessboard.

The upper-left corner of the 4×4 chessboard has the coordinates, row = 0, column = 0. The

lower-right corner of the 4×4 chessboard has the coordinates, row = 3, column = 3.

Coordinates are printed in (row, column) format in the output. The upper-left and lower-right

corners should be printed as (0, 0) and (3, 3), respectively.

Program 1 is the Play class that facilitates the puzzle to play.

Program 2 is the ChessBoard class that represents a chessboard for the 4-Queen Puzzle

having the following members:

(1) solutionQuantity: a field to keep a count of generated solutions.

(2) BOARD_SIZE: a constant with the value 4, denoting a 4×4 chessboard.

(3) queens: an array of Queens to keep track of the four queens.

(4) Queen: a nested class representing a single queen with the following members:

(i) row: a field indicating the row position of this Queen

(ii) column: a field indicating the column position of this Queen

(iii) The constructor creates and places a Queen on column 0 on the specified row.

(iv) The getter and setter methods for column

(v) The canAttack method returns true if this Queen can attack the specified Queen, or

false otherwise.

(vi) The toString method returns the String representation of this Queen.

(5) The constructor creates and places 4 queens on column 0 of each row.

(6) The toString method returns the String representation of the coordinates of all the

queens on the chessboard.

(7) The isValidPlacement method returns true if any of the 4 queens cannot attack the

other ones, or false otherwise.

- 32 -

(8) The generateSolutions method calls the tryColumnsOf method that repeatedly

places each queen on the first column of different rows, and then moves them to the

right to find out all possible valid placements of the queens.

(9) The printSolution method prints the current positions of the queens as a valid

solution.

(10) The getRangeStream method generates a Stream<Integer> of the specified int

range.

Executing the main method of the Play class produces the following output.

Solution No. 1: (0, 1), (1, 3), (2, 0), (3, 2)

EQEE

EEEQ

QEEE

EEQE

Solution No. 2: (0, 2), (1, 0), (2, 3), (3, 1)

EEQE

QEEE

EEEQ

EQEE

[Program 1]

public class Play {

 public static void main(String[] args) {

 ChessBoard cb = new ChessBoard();

 cb.generateSolutions();

 }

}

[Program 2]

import java.util.Arrays;

import java.util.stream.Collectors;

import java.util.stream.IntStream;

import java.util.stream.Stream;

	

- 33 -

class ChessBoard {

 private static final int BOARD_SIZE = 4;

 private static final String DELIMITER = ", ";

 private static final char QUEEN = 'Q';

 private static final char EMPTY = 'E';

 private int solutionQuantity;

 private Queen[] queens;

 static class Queen {

 private final int row;

 private int column;

 Queen(int row) { this.row = row; }

 private void setColumn(int column) { this.column = column; }

 int getColumn() { return column; }

 boolean canAttack(Queen other) {

 return column == other.column || A ;

 }

 @Override

 public String toString() {

 return "(" + row + DELIMITER + column + ")";

 }

 }

 ChessBoard() {

 // Populates queens[] with per row Queen instances

 queens = getRangeStream()

 // map creates a Queen with each row index

 // and returns a Stream<Queen>

 .map(B)

 // toArray collects the Queen instances into a Queen[]

 .toArray(Queen[]::new);

 }

	

- 34 -

 @Override

 public String toString() {

 String s;

 s = Stream.of(queens)

 // Converts a Queen to its String representation

 .map(Queen::toString)

 // Concatenates all Strings using DELIMITER

 // followed by a line separator (e.g. "a" "b" to "a, b\n")

 .collect(Collectors.joining(DELIMITER,

 "", System.lineSeparator()));

 char[] boardRow = new char[BOARD_SIZE];

 StringBuilder sb = new StringBuilder(s);

 getRangeStream().forEach(i -> {

 Arrays.fill(boardRow, EMPTY);

 boardRow[C] = QUEEN;

 sb.append(boardRow).append(System.lineSeparator());

 });

 return sb.toString();

 }

 private boolean isValidPlacement() {

 return getRangeStream(0, BOARD_SIZE - 1)

 // noneMatch returns true if none of the given conditions is true.

 .noneMatch(i -> getRangeStream(i + 1, BOARD_SIZE)

 // anyMatch immediately returns true if any given condition is found true.

 .anyMatch(j -> queens[i].canAttack(queens[D])));

 }

 private void printSolution() {

 System.out.printf("Solution No. %d: %s%n",

 ++solutionQuantity, E);

 }

 void generateSolutions() {

 tryColumnsOf(0);

 }

	

- 35 -

 private void tryColumnsOf(int row) {

 getRangeStream().forEach(col -> {

 queens[row].setColumn(col);

 if (row + 1 < BOARD_SIZE) {

 tryColumnsOf(row + 1);

 } else if (isValidPlacement()) {

 printSolution();

 }

 });

 }

 private Stream<Integer> getRangeStream() {

 return getRangeStream(0, BOARD_SIZE);

 }

 private Stream<Integer> getRangeStream(int begin, int end) {

 // Generates a Stream<Integer> of the specified int range

 // from begin (inclusive) to end (exclusive)

 return IntStream.range(begin, end).boxed();

 }

}

Subquestion 1

From the answer groups below, select the correct answer to be inserted into each blank

 in Program 2.

Answer group for A

a) Math.abs(row - other.row) == Math.abs(column - other.column)

b) row - column == other.row - other.column

c) row + column == other.row + other.column

d) row == other.row

e) row - other.row == column - other.column

Answer group for B

a) i -> Queen(i) b) new Queen()

c) Queen::new d) queens[i]::new

e) queens[i] = new Queen(i)

- 36 -

Answer group for C

a) i b) queens[i]

c) queens[i].getColumn() d) queens[i].row

Answer group for D

a) i b) i - 1 c) i + 1 d) j

e) j – 1 f) j + 1

Answer group for E

a) Arrays.asList(queens) b) ChessBoard c) queens

d) String.of(queens) e) this

Subquestion 2

From the answer group below, select the correct answer to be inserted into each blank

 in the following description.

In the ChessBoard class, the tryColumnsOf method is recursively called. The maximum

depth of the recursive call is F , where the first call from the generateSolutions

method is counted as depth one, and the isValidPlacement method is called from the

tryColumnsOf method G times.

Answer group for F and G

a) 2 b) 4 c) 8

d) 16 e) 32 f) 64

g) 128 h) 256

